Naked-eye detection of site-specific ssRNA and ssDNA using PAMmer-assisted CRISPR/Cas9 coupling with exponential amplification reaction.

Talanta

Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate and effective detection of single-stranded nucleic acids is vital in both disease diagnosis and pathological studies. Hence, we develop a PAMmer-assisted CRISPR/Cas9 system mediated G4-EXPAR (Cas-G4EX) strategy for site-specific detection of ssRNA and ssDNA. PAMmer-assisted CRISPR/Cas9 executes the site-specific cleavage of target ssRNA or ssDNA and released product fragment with the desired sequence at the 3'-terminal. This fragment serves as a primer to activate subsequent sequence-dependent exponential amplification reaction (EXPAR). The G-rich EXPAR products assembles with hemin to form a G-Quadruplex (G4/hemin). G4/hemin catalyzes ABTS-HO system with the appearance of vivid green color, realizing naked-eye analysis. Cas-G4EX integrates the superiority of CRISPR/Cas9 and EXPAR, presenting outstanding site-specific recognition and high-performance amplification efficiency. Meanwhile, the programmability of CRISPR/Cas9 system makes the proposed method become a universal detection paradigm for any ssRNA or ssDNA. Cas-G4EX assay shows the linear relationship from 250 aM to 2.5 nM for ssRNA detection with the actual LOD of 250 aM, and that ranges from 100 aM to 1 nM for ssDNA detection with the actual LOD of 100 aM. Additionally, the acceptable recoveries of 101.48%-109.61% for ssRNA and 93.25%-111.98% for ssDNA in real detection of human serum are obtained for detection of single-strand nucleic acid in real samples. Cas-G4EX also exhibits the excellent discrimination for single-base mutation of single-stranded nucleic acids. Therefore, Cas-G4EX assay provides a promising platform in the applications of molecular diagnosis and pathological analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2021.122554DOI Listing

Publication Analysis

Top Keywords

ssrna ssdna
16
pammer-assisted crispr/cas9
12
ssdna pammer-assisted
8
exponential amplification
8
amplification reaction
8
single-stranded nucleic
8
nucleic acids
8
diagnosis pathological
8
crispr/cas9 system
8
cas-g4ex assay
8

Similar Publications

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

ssDNA and ssRNA Promote Phase Condensation of SAMHD1.

Biochemistry

September 2025

Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States.

SAMHD1 (SAM domain and HD domain-containing protein 1) is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) with functions in viral restriction, R-loop resolution, DNA repair, telomere maintenance, ssRNA homeostasis, and regulation of self-nucleic acids. As a dNTPase, SAMHD1 functions as an allosterically activated tetramer, where binding of GTP to the A1 activator site of each monomer initiates dNTP-dependent tetramerization. cEM structures reveal that the nucleic-acid-related functions of SAMHD1 involve binding of guanine residues to the A1 site, leading to oligomeric forms that appear as beads-on-a-string on single-stranded RNA and DNA.

View Article and Find Full Text PDF

Conventional mRNA therapeutics have focused on optimizing translation and minimizing immunogenicity for vaccine and protein replacement applications. However, immunogenicity, often considered a challenge, can also be harnessed for therapeutic advantage. This work challenges the necessity of extensive mRNA modification as a universal strategy by introducing 'immunoagonist non-coding RNA (incRNA)', a new class of RNA therapeutic that exploits innate immune activation rather than evading it.

View Article and Find Full Text PDF

N 6-Methyladenosine (m6A) is a prevalent post-transcriptional modification in eukaryotic messenger RNA. Two cancer-linked human Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenases, the fat mass and obesity associated-protein (FTO), and AlkB human homolog 5 (ALKBH5) catalyse m6A methyl group oxidation. While ALKBH5 has consistently been reported to catalyse m6A demethylation, there are conflicting reports concerning the FTO products.

View Article and Find Full Text PDF

Virucidal Efficacy of Organic Acids and Plant Essential Oils.

Food Environ Virol

August 2025

Department of Environmental Science, Water & Energy Sustainable Technology (WEST) Center, The University of Arizona, Tucson, AZ, USA.

Currently, the predominant commercially available disinfectants and sanitizers are formulated with active ingredients including alcohol, halogenated compounds (e.g., sodium hypochlorite), surfactants, oxidizing agents (eg.

View Article and Find Full Text PDF