98%
921
2 minutes
20
Humans are exposed daily to complex mixtures of chemical substances via food intake, inhalation, and dermal contact. Developmental neurotoxicity is an understudied area and entails one of the most complex areas in toxicology. Animal studies for developmental neurotoxicity (DNT) are hardly performed in the context of regular hazard studies, as they are costly and time consuming and provide only limited information as to human relevance. There is a need for a combination of in vitro and in silico tests for the assessment of chemically induced DNT in humans. The zebrafish () embryo (ZFE) provides a powerful model to study DNT because it shows fast neurodevelopment with a large resemblance to the higher vertebrate, including the human system. One of the suitable readouts for DNT testing in the zebrafish is neurobehaviour (stimulus-provoked locomotion) since this provides integrated information on the functionality and status of the entire nervous system of the embryo. In the current study, environmentally relevant pharmaceuticals and their mixtures were investigated using the zebrafish light-dark transition test. Zebrafish embryos were exposed to three neuroactive compounds of concern, carbamazepine (CBZ), fluoxetine (FLX), and venlafaxine (VNX), as well as their main metabolites, carbamazepine 10,11-epoxide (CBZ 10,11E), norfluoxetine (norFLX), and desvenlafaxine (desVNX). All the studied compounds, except CBZ 10,11E, dose-dependently inhibited zebrafish locomotor activity, providing a distinct behavioural phenotype. Mixture experiments with these pharmaceuticals identified that dose addition was confirmed for all the studied binary mixtures (CBZ-FLX, CBZ-VNX, and VNX-FLX), thereby supporting the zebrafish embryo as a model for studying the cumulative effect of chemical mixtures in DNT. This study shows that pharmaceuticals and a mixture thereof affect locomotor activity in zebrafish. The test is directly applicable in environmental risk assessment; however, further studies are required to assess the relevance of these findings for developmental neurotoxicity in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297305 | PMC |
http://dx.doi.org/10.3390/ijerph18136717 | DOI Listing |
iScience
September 2025
Department of Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK.
Manganese (Mn) is an essential trace metal required for normal biological function, yet it also poses neurotoxic risks when dysregulated. Maintaining proper intracellular and extracellular Mn levels is critical, as Mn imbalance has been implicated in a spectrum of human diseases-including inherited Mn transport disorders, acquired manganism, and more prevalent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Despite these associations, the cellular mechanisms driving Mn-induced neuropathology remain poorly understood.
View Article and Find Full Text PDFACS Chem Neurosci
September 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, P.R. China.
Developmental epileptic encephalopathies (DEEs), including Dravet syndrome (DS), require antiseizure medications (ASMs) that balance efficacy with developmental safety. There is an urgent clinical need for novel therapeutic agents that combine potent anticonvulsant activity with developmental safety. β-Asarone, an active constituent of plants, has demonstrated antiepileptic potential, but its toxicities severely limit clinical application.
View Article and Find Full Text PDFEnviron Res
September 2025
Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
Organophosphate flame retardants (OPFRs) are widely used environmental contaminants with suspected developmental neurotoxicity, yet their stage-specific molecular impacts and potential relevance to autism spectrum disorder (ASD) remain poorly defined. We integrated transcriptomic and lipidomic analyses from two rat models to investigate OPFR-induced disruption across early neurodevelopment. In dataset GSE148266, fetal forebrain and placenta were analyzed following in utero OPFR exposure; in dataset GSE211430, neonatal cortical RNA-seq and lipidomics were profiled after postnatal exposure to triphenyl phosphate and isopropylated triaryl phosphate (1,000 μg/day; n = 10/sex/group).
View Article and Find Full Text PDFBiology (Basel)
August 2025
College of Animal Science and Technology, Yangzhou University, 88 South University Rd, Yangzhou 225009, China.
Honeybees () are indispensable pollinators vital to global biodiversity, ecosystem stability, and agricultural productivity, and they promote over 35% of food crops and 75% of flowering plants. Yet, they are in unprecedented decline, partly as a result of neonicotinoid pesticide use elsewhere. These effects on honey bee health are synthesized in this paper through molecular, physiological, and behavioral data showing that sublethal effects of neonicotinoids impair honey bee health.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature.
View Article and Find Full Text PDF