Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Porcine reproductive and respiratory syndrome (PRRS) is a serious disease burdening global swine industry. Infection by its etiological agent, PRRS virus (PRRSV), shows a highly restricted tropism of host cells and has been demonstrated to be mediated by an essential scavenger receptor (SR) CD163. CD163 fifth SR cysteine-rich domain (SRCR5) is further proven to play a crucial role during viral infection. Despite intense research, the involvement of CD163 SRCR5 in PRRSV infection remains to be elucidated. In the current study, we prepared recombinant monkey CD163 (moCD163) SRCR5 and human CD163-like homolog (hCD163L1) SRCR8, and determined their crystal structures. After comparison with the previously reported crystal structure of porcine CD163 (pCD163) SRCR5, these structures showed almost identical structural folds but significantly different surface electrostatic potentials. Based on these differences, we carried out mutational research to identify that the charged residue at position 534 in association with the one at position 561 were important for PRRSV-2 infection in vitro. Altogether the current work sheds some light on CD163-mediated PRRSV-2 infection and deepens our understanding of the viral pathogenesis, which will provide clues for prevention and control of PRRS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246673PMC
http://dx.doi.org/10.1186/s13567-021-00969-zDOI Listing

Publication Analysis

Top Keywords

cd163 srcr5
8
sheds light
8
porcine reproductive
8
reproductive respiratory
8
infection vitro
8
prrsv-2 infection
8
cd163
6
infection
6
srcr5
5
structural comparison
4

Similar Publications

Unlabelled: Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the global swine industry. Numerous modified live vaccines (MLVs) against PRRSV have been developed through the serial passage of wild-type parental strains in Marc-145 cells. However, the infectivity of these MLVs toward their primary target cell , porcine alveolar macrophage (PAM), is markedly reduced.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe economic losses in the swine industry by targeting pulmonary alveolar macrophages via the CD163 receptor, particularly its SRCR5 domain. However, the molecular details of small-molecule inhibition at this interface remain unclear. Here, we provide the first mechanistic insights into how the PRRSV/CD163-IN-1 (B7) compound blocks CD163-SRCR5.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major threat to the global swine industry, causing significant economic losses. To address this, we developed a scalable recombinant adeno-associated virus (rAAV)-based strategy for the delivery of soluble viral receptors (SVRs) to treat and potentially eliminate PRRSV infections. This strategy involves fusing the virus-binding domains of two key cellular receptors, sialoadhesin (Sn4D) and CD163 (SRCR5-9), with an Fc fragment.

View Article and Find Full Text PDF

CD163 is the primary receptor for PRRSV, and its SRCR5 domain, encoded by exon 7, is crucial for supporting PRRSV infection. Previous studies have used CRISPR/Cas9 technology to remove exon 7 from the host genome, and the edited pigs were completely resistant to PRRSV infection. In this study, we used CRISPR/Cas9 technology mimicking an adenine base editor (ABE) to edit the splice acceptor site of exon 7, rendering it nonfunctional.

View Article and Find Full Text PDF