Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Formic acid (HCOOH) is an important component of atmospheric acidity but its budget is poorly understood, with prior observations implying substantial missing sources. Here we combine pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with chemical transport model (GEOS-Chem CTM) and back trajectory analyses to provide the first global in-situ characterization of HCOOH in the remote atmosphere. ATom reveals sub-100 ppt HCOOH concentrations over most of the remote oceans, punctuated by large enhancements associated with continental outflow. Enhancements correlate with known combustion tracers and trajectory-based fire influences. The GEOS-Chem model underpredicts these in-plume HCOOH enhancements, but elsewhere we find no broad indication of a missing HCOOH source in the background free troposphere. We conclude that missing non-fire HCOOH precursors inferred previously are predominantly short-lived. We find indications of a wet scavenging underestimate in the model consistent with a positive HCOOH bias in the tropical upper troposphere. Observations reveal episodic evidence of ocean HCOOH uptake, which is well-captured by GEOS-Chem; however, despite its strong seawater undersaturation HCOOH is not consistently depleted in the remote marine boundary layer. Over fifty fire and mixed plumes were intercepted during ATom with widely varying transit times and source regions. HCOOH:CO normalized excess mixing ratios in these plumes range from 3.4 to >50 ppt/ppb CO and are often over an order of magnitude higher than expected primary emission ratios. HCOOH is thus a major reactive organic carbon reservoir in the aged plumes sampled during ATom, implying important missing pathways for in-plume HCOOH production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216292PMC
http://dx.doi.org/10.1021/acsearthspacechem.1c00049DOI Listing

Publication Analysis

Top Keywords

hcooh
12
hcooh remote
8
remote atmosphere
8
atmospheric tomography
8
airborne observations
8
in-plume hcooh
8
atom
5
atmosphere constraints
4
constraints atmospheric
4
tomography atom
4

Similar Publications

MOF-derived Pd/CeO-NC catalyst for efficient electrooxidation of formic acid.

Chem Commun (Camb)

September 2025

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.

The MOF-derived Pd-CeO/NC catalyst exhibited enhanced formic acid electrooxidation activity due to interfacial electronic reconstruction, which downshifted the Pd d-band centre, thereby promoting the indirect oxidation of HCOOH and facilitating CO* oxidation.

View Article and Find Full Text PDF

Host-Guest Metal Interaction in Cu-In Single Atom Alloy Switching Electrocatalytic CO Reduction Pathway.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.

The catalytic behavior of alloy electrocatalyst is strongly influenced by host-guest metal interaction, which governs adsorption energy and product selectivity. However, in conventional bimetallic alloy systems, the catalyst composition and the geometric configuration often obscure the identification of critical active sites. Here, we investigate the host-guest metal interaction in Cu-In single atom alloy (SAA) catalysts, demonstrating a remarkable switching of electrochemical CO reduction reaction (CORR) pathway.

View Article and Find Full Text PDF

Covalently linked triarylborane-iridium(III) complex as a photocatalyst for CO reduction.

Chem Commun (Camb)

August 2025

Division of Chemistry and Materials Science, Graduate School of Integrated Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan.

A biscyclometalated Ir(III) complex bearing a triarylborane unit (IrDB) catalyzes the reduction of CO to CO and HCOOH under visible light irradiation in the presence of 1,3-dimethyl-2-phenyl-2,3-dihydro-1-benzo[]imidazole (BIH). A direct covalent linkage between the two components-the Ir(III) metal center and the triarylborane moiety-is essential for achieving the photocatalytic activity.

View Article and Find Full Text PDF

The C─H bond is the most abundant chemical bond in organic compounds. Therefore, the development of the more direct methods for C─H bond cleavage and the elucidation of their mechanisms will provide an important theoretical basis for achieving more efficient C─H functionalization and target molecule construction. In this study, the catalyst-free photon-induced direct homolysis of C─H bonds at room temperature was discovered for the first time.

View Article and Find Full Text PDF

Immobilized Azole Layer Tunes Interfacial Hydrogen Source for CO Electroreduction in Strong Acid.

J Am Chem Soc

August 2025

Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science an

Achieving selective electrochemical CO reduction reaction (CORR) in strong acid holds potential to resolve the "carbonate formation" problem yet is hindered by the competing hydrogen evolution reaction (HER). The interplay between different hydrogen sources (i.e.

View Article and Find Full Text PDF