Publications by authors named "Benjamin A Nault"

Missing sulfate production pathways have been implicated as the cause of model underestimates of sulfate during haze events in East Asia. We add multiphase oxidation of SO in aerosol particles by HO, O, NO, HCHO, and O, catalyzed by transition metal ions (TMIs), to the GEOS-Chem model and evaluate the model with (1) year-round ground-based observations in Seoul, South Korea, (2) airborne observations from the KORUS-AQ field campaign, and (3) fall and winter ground-based observations in Beijing, China. Multiphase chemistry contributes 14% to 90% to total sulfate production depending on the location and season and increases model daily average sulfate by 2 to 3 μg m, with maximum daily increases up to 12 μg m.

View Article and Find Full Text PDF

Using a new approach that constrains thermodynamic modeling of aerosol composition with measured gas-to-particle partitioning of inorganic nitrate, we estimate the acidity levels for aerosol sampled in the South Korean planetary boundary layer during the NASA/NIER KORUS-AQ field campaign. The pH (mean ± 1σ = 2.43±0.

View Article and Find Full Text PDF

As part of the summer 2022 NYC-METS (New York City metropolitan Measurements of Emissions and TransformationS) campaign and the ASCENT (Atmospheric Science and Chemistry mEasurement NeTwork) observational network, speciated particulate matter was measured in real time in Manhattan and Queens, NY, with additional gas-phase measurements. Largely due to observed reductions in inorganic sulfate aerosol components over the 21st century, summertime aerosol composition in NYC has become predominantly organic (80-83%). Organic aerosol source apportionment via positive matrix factorization showed that this is dominated by secondary production as oxygenated organic aerosol (OOA) source factors comprised 73-76% of OA.

View Article and Find Full Text PDF

In 2018, the ATHLETIC campaign was conducted at the University of Colorado Dal Ward Athletic Center and characterized dynamic indoor air composition in a gym environment. Among other parameters, inorganic particle and gas-phase species were alternatingly measured in the gym's supply duct and weight room. The Indoor Model of Aerosols, Gases, Emissions, and Surfaces (IMAGES) uses the inorganic aerosol thermodynamic equilibrium model, ISORROPIA, to estimate the partitioning of inorganic aerosols and corresponding gases.

View Article and Find Full Text PDF
Article Synopsis
  • Ethylene oxide (EtO) is a volatile organic compound and carcinogen, with limited reliable data on its ambient concentrations near production facilities, raising exposure concerns.
  • In February 2023, sensitive mobile measurements in southeastern Louisiana showed that 75% of sampled areas had EtO levels above the threshold associated with a 1-in-a-million cancer risk, with some locations exceeding levels indicating a 1-in-1,000 risk.
  • This study revealed higher EtO concentrations than previous EPA estimates and highlights the need for improved monitoring methods to assess exposure risks in industrial areas.
View Article and Find Full Text PDF

Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms.

View Article and Find Full Text PDF

The impact of aerosols on human health and climate is well-recognized, yet many studies have only focused on total PM or changes from anthropogenic activities. This study quantifies the health and climate effects of organic aerosols (OA) from anthropogenic, biomass burning, and biogenic sources. Using two atmospheric chemistry models, CAM-chem and GEOS-Chem, our findings reveal that anthropogenic primary OA (POA) has the highest efficiency for health effects but the lowest for direct radiative effects due to spatial and temporal variations associated with population and surface albedo.

View Article and Find Full Text PDF

Indoor gas-phase radical sources are poorly understood but expected to be much different from outdoors. Several potential radical sources were measured in a windowless, light-emitting diode (LED)-lit room in a college athletic facility over a 2 week period. Alternating measurements between the room air and the supply air of the heating, ventilation, and air-conditioning system allowed an assessment of sources.

View Article and Find Full Text PDF

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors.

View Article and Find Full Text PDF

The role of anthropogenic NO emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO to explore RONO phase partitioning.

View Article and Find Full Text PDF

Formic acid (HCOOH) is an important component of atmospheric acidity but its budget is poorly understood, with prior observations implying substantial missing sources. Here we combine pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with chemical transport model (GEOS-Chem CTM) and back trajectory analyses to provide the first global in-situ characterization of HCOOH in the remote atmosphere. ATom reveals sub-100 ppt HCOOH concentrations over most of the remote oceans, punctuated by large enhancements associated with continental outflow.

View Article and Find Full Text PDF
Article Synopsis
  • The Korea - United States Air Quality Study (2016) investigated the sources of high ozone and aerosol levels in South Korea through aircraft and ground measurements focused on particulate matter (PM) smaller than 2.5 micrometers.
  • The study analyzed PM data to understand conditions leading to air quality standard violations, especially in the Seoul area, and examined the interaction between meteorological factors and aerosol concentrations.
  • It identified two key meteorological periods influencing PM levels: stagnant clear conditions, which boosted local aerosol production, and cloudy, humid conditions that accelerated aerosol production from both local and transported emissions, suggesting the need for more continuous monitoring to better understand these dynamics.
View Article and Find Full Text PDF

Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder.

View Article and Find Full Text PDF

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCHSCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur.

View Article and Find Full Text PDF

Oceanic emissions of iodine destroy ozone, modify oxidative capacity, and can form new particles in the troposphere. However, the impact of iodine in the stratosphere is highly uncertain due to the lack of previous quantitative measurements. Here, we report quantitative measurements of iodine monoxide radicals and particulate iodine (I) from aircraft in the stratosphere.

View Article and Find Full Text PDF

Cloud condensation nuclei (CCN) can affect cloud properties and therefore Earth's radiative balance. New particle formation (NPF) from condensable vapours in the free troposphere has been suggested to contribute to CCN, especially in remote, pristine atmospheric regions, but direct evidence is sparse, and the magnitude of this contribution is uncertain. Here we use in situ aircraft measurements of vertical profiles of aerosol size distributions to present a global-scale survey of NPF occurrence.

View Article and Find Full Text PDF

We report airborne measurements of acetaldehyde (CHCHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CHCHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CHCHO is estimated to be 34 Tg a (42 Tg a if considering bubble-mediated transfer), and the ocean impacts on tropospheric CHCHO are mostly confined to the marine boundary layer.

View Article and Find Full Text PDF

NOx (NOx ≡ NO + NO2) regulates O3 and HOx (HOx ≡ OH + HO2) concentrations in the upper troposphere. In the laboratory, it is difficult to measure rates and branching ratios of the chemical reactions affecting NOx at the low temperatures and pressures characteristic of the upper troposphere, making direct measurements in the atmosphere especially useful. We report quasi-Lagrangian observations of the chemical evolution of an air parcel following a lightning event that results in high NOx concentrations.

View Article and Find Full Text PDF