Environ Sci Technol
November 2024
In 2018, the ATHLETIC campaign was conducted at the University of Colorado Dal Ward Athletic Center and characterized dynamic indoor air composition in a gym environment. Among other parameters, inorganic particle and gas-phase species were alternatingly measured in the gym's supply duct and weight room. The Indoor Model of Aerosols, Gases, Emissions, and Surfaces (IMAGES) uses the inorganic aerosol thermodynamic equilibrium model, ISORROPIA, to estimate the partitioning of inorganic aerosols and corresponding gases.
View Article and Find Full Text PDFEnviron Sci Technol
November 2023
Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms.
View Article and Find Full Text PDFGeophys Res Lett
September 2022
Aerosol mass extinction efficiency (MEE) is a key aerosol property used to connect aerosol optical properties with aerosol mass concentrations. Using measurements of smoke obtained during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign we find that mid-visible smoke MEE can change by a factor of 2-3 between fresh smoke (<2 hr old) and one-day-old smoke. While increases in aerosol size partially explain this trend, changes in the real part of the aerosol refractive index (real(n)) are necessary to provide closure assuming Mie theory.
View Article and Find Full Text PDFIndoor gas-phase radical sources are poorly understood but expected to be much different from outdoors. Several potential radical sources were measured in a windowless, light-emitting diode (LED)-lit room in a college athletic facility over a 2 week period. Alternating measurements between the room air and the supply air of the heating, ventilation, and air-conditioning system allowed an assessment of sources.
View Article and Find Full Text PDFEnviron Sci Technol
December 2021
Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder.
View Article and Find Full Text PDFUnderstanding the sources and composition of organic aerosol (OA) in indoor environments requires rapid measurements, since many emissions and processes have short timescales. However, real-time molecular-level OA measurements have not been reported indoors. Here, we present quantitative measurements, at a time resolution of five seconds, of molecular ions corresponding to diverse aerosol-phase species, by applying extractive electrospray ionization mass spectrometry (EESI-MS) to indoor air analysis for the first time, as part of the highly instrumented HOMEChem field study.
View Article and Find Full Text PDFPartitioning to surfaces is an important sink for volatile organic compounds (VOCs) indoors, but the mechanisms are not well understood or quantified. Here, a mass spectrometer was coupled to a portable surface reactor and a flow tube to measure partitioning of VOCs into paint films coated onto glass or wallboard, and their subsequent diffusion. A model was developed to extract values of the effective absorbing organic mass concentration of the film, C , which is a measure of absorption capacity, and VOC diffusion coefficients, D , from VOC time profiles measured during film passivation and depassivation.
View Article and Find Full Text PDFEnviron Sci Technol
November 2019
The chemical composition of indoor air at the University of Colorado, Boulder art museum was measured by a suite of gas- and particle-phase instruments. Over 80% of the total observed organic carbon (TOOC) mass (100 μg m) consisted of reduced compounds (carbon oxidation state, OS < -0.5) with high volatility (log * > 7) and low carbon number ( < 6).
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
July 2019
We have collected data on the proton-transfer reactions with HO ions for trace gas detection into an online and publicly available library. The library allows users of proton-transfer-reaction mass spectrometry (PTR-MS) and selected-ion flow-tube mass spectrometry (SIFT-MS) to look up at which m/z a trace gas of interest is detected. Vice versa, the library also allows looking up what trace gas may have been responsible for a product ion detected in PTR-MS and SIFT-MS.
View Article and Find Full Text PDFA 6-week study was conducted at the University of Colorado Art Museum, during which volatile organic compounds (VOCs), carbon dioxide (CO), ozone (O), nitric oxide (NO), nitrogen dioxide (NO), other trace gases, and submicron aerosol were measured continuously. These measurements were then analyzed using a box model to quantify the rates of major processes that transformed the composition of the air. VOC emission factors were quantified for museum occupants and their activities.
View Article and Find Full Text PDFThe albedo and microphysical properties of clouds are controlled in part by the hygroscopicity of particles serving as cloud condensation nuclei (CCN). Hygroscopicity of complex organic mixtures in the atmosphere varies widely and remains challenging to predict. Here we present new measurements characterizing the CCN activity of pure compounds in which carbon chain length and the numbers of hydroperoxy, carboxyl, and carbonyl functional groups were systematically varied to establish the contributions of these groups to organic aerosol apparent hygroscopicity.
View Article and Find Full Text PDFPartitioning of gas-phase organic compounds to the walls of Teflon environmental chambers is a recently reported phenomenon than can affect the yields of reaction products and secondary organic aerosol (SOA) measured in laboratory experiments. Reported time scales for reaching gas-wall partitioning (GWP) equilibrium (τGWE) differ by up to 3 orders of magnitude, however, leading to predicted effects that vary from substantial to negligible. A new technique is demonstrated here in which semi- and low-volatility oxidized organic compounds (saturation concentration c* < 100 μg m(-3)) were photochemically generated in rapid bursts in situ in an 8 m(3) environmental chamber, and then their decay in the absence of aerosol was measured using a high-resolution chemical ionization mass spectrometer (CIMS) equipped with an "inlet-less" NO3(-) ion source.
View Article and Find Full Text PDF