Accelerating transdermal delivery of insulin by ginsenoside nanoparticles with unique permeability.

Int J Pharm

Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China. Electronic address:

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetes is a metabolic disease caused by insufficient insulin secretion, action or resistance, in which insulin plays an irreplaceable role in the its treatment. However, traditional administration of insulin requires continuous subcutaneous injections, which is accompanied by inevitable pain, local tissue necrosis and hypoglycemia. Herein, a green and safe nanoformulation with unique permeability composed of insulin and ginsenosides is developed for transdermal delivery to reduce above-mentioned side effects. The ginsenosides are self-assembled to form shells to protect insulin from hydrolysis and improve the stability of nanoparticles. The nanoparticles can temporarily permeate into cells in 5 min and promptly excrete from the cell for deeper penetration. The insulin permeation is related to the disorder of stratum corneum lipids caused by ginsenosides. The skin acting as drug depot mantains the nanoparticles released continuously, therefore the body keeps euglycemic for 48 h. Encouraged by its long-lasting and effective transdermal therapy, ginsenosides-based nano-system is expected to deliver other less permeable drugs like proteins and peptides and benefit those who are with chronic diseases that need long-term medication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120784DOI Listing

Publication Analysis

Top Keywords

transdermal delivery
8
unique permeability
8
insulin
7
accelerating transdermal
4
delivery insulin
4
insulin ginsenoside
4
nanoparticles
4
ginsenoside nanoparticles
4
nanoparticles unique
4
permeability diabetes
4

Similar Publications

Natural phytoconstituents such as betanin and curcumin have attracted interest for their significant antioxidant and anti-inflammatory properties. Their therapeutic efficacy is notably constrained by inadequate bioavailability and reduced skin permeability. The current study developed an ethosome-based gel system for the delivery of betanin and curcumin, with the objective of improving transdermal penetration and providing sustained anti-inflammatory effects.

View Article and Find Full Text PDF

Microgel-Crosslinked, thermo- and mechano- dual Responsive, Ketoprofen-Loaded hydrogels with high mechanical properties and rapid response.

Int J Pharm

September 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit

Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.

View Article and Find Full Text PDF

Purpose: The present study aimed to fabricate microneedles (MNs) for transdermal delivery of insulin. Chitosan-conjugated carboxy phenyl boronic acid polymer was synthesized and characterized to load insulin in the form of nanoparticles.

Methods: Optimized insulin nanoparticles (ILN-NPs) were loaded into MN arrays by micromolding, and the resulting MN patches were characterized by scanning electron microscopy (SEM) and mechanical failure tests.

View Article and Find Full Text PDF

Transdermal drug delivery systems (TDDS) represent a non-invasive approach to achieve controlled drug release through the skin barrier, offering stable plasma concentrations while avoiding gastrointestinal and hepatic metabolism. However, the skin barrier poses physical challenges, making it difficult for most drugs to penetrate deep tissues using TDDS. This review systematically summarizes the research progress in nanocarrier design, physical technology application, and artificial intelligence (AI)-driven TDDS optimization design aimed at overcoming the key problem of skin barrier penetration.

View Article and Find Full Text PDF

Skin aging serves as a critical indicator of systemic health decline. Despite Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) being a key therapeutic target, mechanistic understanding remains incomplete and potent, safe activators are lacking, hindering clinical progress. This study proposes the "Barrier-Skin-Systemic Aging Axis," demonstrating that epidermal barrier disruption accelerates aging via PPARγ suppression.

View Article and Find Full Text PDF