Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescence guided surgery (FGS) has been highlighted in the clinical site for guiding surgical procedures and providing the surgeon with a real-time visualization of the operating field. FGS is a powerful technique for precise surgery, particularly tumor resection; however, clinically approved fluorescent dyes have often shown several limitations during FGS, such as non-tumor-targeting, low in vivo stability, insufficient emission intensity, and low blood-brain barrier penetration. In this study, we disclose a fluorescent dye complex, peptide, and protein for the targeted visualization of human glioblastoma (GBM) cells and tissues. Our noble triple receptor-targeting fluorescent complex (named ) consists of (i) dipolar oxazepine dye (), which has high stability, low cytotoxicity, bright fluorescence, and two-photon excitable, (ii) tetra-peptide (SIWV) for the targeting of the caveolin-1 receptor, and (iii) bovine serum-albumin (BSA) protein for the targeting of albondin (gp60) and secreted protein acidic and rich in cysteine receptor. The photophysical properties and binding mode of were analyzed, and the imaging of GBM cell lines and human clinical GBM tissues were successfully demonstrated in this study. Our findings hold great promise for the application of to GBM identification and the surgery at clinical sites, as a new FGS agent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.1c00320DOI Listing

Publication Analysis

Top Keywords

human glioblastoma
8
triple receptor-targeting
8
receptor-targeting fluorescent
8
fluorescent complex
8
glioblastoma visualization
4
visualization triple
4
fluorescent
4
complex dye
4
dye siwv
4
siwv tetra-peptide
4

Similar Publications

Glioblastoma (GB), IDH-wildtype (IDH-wt), is the most prevalent primary malignant brain neoplasm in adults. Despite adjuvant therapy, the prognosis for these tumors remains dismal, with a median survival of around 15-18 months. Although rare, extracranial metastases from GB are reported with increasing frequency, likely due to advancements in follow-up, treatments, and improved patient survival.

View Article and Find Full Text PDF

One of the key factors contributing to the poor prognosis of glioblastoma is the treatment resistance of glioma stem cells (GSCs). In this study, the efficacy of photodynamic therapy (PDT) using talaporfin sodium (NPe6), a second-generation photosensitizer, in combination with a semiconductor laser approved for clinical use in Japan was evaluated. The evaluation was performed in a patient-derived glioma stem cell (GSC) line, MGG8, which was established from human glioblastoma tissue.

View Article and Find Full Text PDF

Glioblastoma (GBM) exhibits remarkable intra-tumoral heterogeneity, which contributes to therapeutic resistance and poor clinical outcomes. In this study, we employed integrative single-cell RNA sequencing analysis across two complementary public datasets encompassing diverse cellular populations from GBM centre and periphery regions to elucidate potential spatial molecular programmes driving tumour progression. Our analyses revealed substantial transcriptomic divergence between anatomically distinct tumour regions, with NUCB2 emerging as significantly upregulated in centre-residing neural progenitor cell-like (NPC-like) tumour cells.

View Article and Find Full Text PDF

What makes the human brain special? Human neurons, glia cells, and cortical circuits have been shown to be significantly different from those of other species, including mammals. This has led to a massive effort by the neuroscience community to directly study these differences in a multimodal approach. The studies conducted include single-cell and network recordings of human tissue samples, single-cell transcriptomics, and morphological analysis of the distinct cells to better understand the underlying differences from the cellular to the systems level.

View Article and Find Full Text PDF

Differential phagocytosis induces diverse macrophage activation states in malignant gliomas.

J Immunother Cancer

September 2025

Department of Pediatrics, Center for Childhood Cancer and Blood Disorders, Division of Heme/Onc and Bone Marrow Transplant, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA

Background: Diffuse midline glioma (DMG) and glioblastoma (GBM) are aggressive brain tumors with limited treatment options. Macrophage phagocytosis is a complex, tightly regulated process governed by competing pro-phagocytic and anti-phagocytic signals. CD47-SIRPα signaling inhibits macrophage activity, while radiotherapy (RT) can enhance tumor immunogenicity.

View Article and Find Full Text PDF