98%
921
2 minutes
20
Information on the sorption of active pharmaceutical ingredients (APIs) in soils and sediments is needed for assessing the environmental risks of these substances yet these data are unavailable for many APIs in use. Predictive models for estimating sorption could provide a solution. The performance of existing models is, however, often poor and most models do not account for the effects of soil/sediment properties which are known to significantly affect API sorption. Therefore, here, we use a high-quality dataset on the sorption behavior of 54 APIs in 13 soils and sediments to develop new models for estimating sorption coefficients for APIs in soils and sediments using three machine learning approaches (artificial neural network, random forest and support vector machine) and linear regression. A random forest-based model, with chemical and solid descriptors as the input, was the best performing model. Evaluation of this model using an independent sorption dataset from the literature showed that the model was able to predict sorption coefficients of 90% of the test set to within a factor of 10 of the experimental values. This new model could be invaluable in assessing the sorption behavior of molecules that have yet to be tested and in landscape-level risk assessments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.125688 | DOI Listing |
Front Plant Sci
August 2025
Country College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China.
Introduction: The discrepancies in near-soil-surface hydrologic processes triggered by herbage spatial distribution pattern greatly influence the variation in hillslope erosion process. However, knowledge about the influence of herbage spatial distribution pattern on hillslope erosion is still limited.
Methods: In the current study, runoff plots (length × width × depth, 2 × 1 × 0.
J Environ Manage
September 2025
College of chemistry and chemical Engineering, Ocean University of China, Qingdao, China. Electronic address:
Tidal estuaries serve as critical zones for biogeochemical connectivity between terrestrial and oceanic ecosystems. With climate change magnifying the impact of flood events on riverine system, dissolved organic matter (DOM) cycling, the largest reactive elemental pool in ecosystems, in tidal estuaries tend to be more complex and remain poorly understood. To address this gap, the response of DOM dynamics to flood events in a typical tidal estuary was explored.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
December 2025
Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
Mar Pollut Bull
September 2025
Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India. Electronic address:
This study presents the first attempt on plant biomonitoring of the polycyclic aromatic hydrocarbons (PAHs) pollution in East Kolkata Wetland (EKW), a Ramsar site in India, using Alternanthera ficoidea (L.). A polluted site, Captain Bheri (CB) and a control area, Kansabati River Basin (KRB) are chosen to compare the severity of the PAHs pollution of the wetland by examining wetland sediment and wetland plant parts (leaf, root, stem, rhizobium).
View Article and Find Full Text PDFJ Environ Manage
September 2025
Ecological Modelling Laboratory, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada. Electronic address:
Agriculture intensification represents an essential strategy to ensure food security for the growing human population, but it also poses considerable environmental concerns. Climate change and associated projections of an increased frequency of extreme precipitation and runoff events may amplify nutrient dynamics along the watershed-lake continuum, and could further exacerbate the poor water quality conditions downstream. Identifying hotspot locations with higher propensity for sediment and nutrient export and designing effective mitigation measures at the source is more critical than ever.
View Article and Find Full Text PDF