98%
921
2 minutes
20
Background: Besides the use of maize grain as food and feed, maize stover can be a profitable by-product for cellulosic ethanol production, whereas the whole plant can be used for silage production. However, yield is reduced by pest damages, stem corn borers being one of the most important yield constraints. Overall, cell wall composition is key in determining the quality of maize biomass, as well as pest resistance. This study aims to evaluate the composition of the four cell wall fractions (cellulose, hemicellulose, lignin and hydroxycinnamates) in diverse maize genotypes and to understand how this composition influences the resistance to pests, ethanol capacity and digestibility.
Results: The following results can be highlighted: (i) pests' resistant materials may show cell walls with low p-coumaric acid and low hemicellulose content; (ii) inbred lines showing cell walls with high cellulose content and high diferulate cross-linking may present higher performance for ethanol production; (iii) and inbreds with enhanced digestibility may have cell walls poor in neutral detergent fibre and diferulates, combined with a lignin polymer composition richer in G subunits.
Conclusions: Results evidence that there is no maize cell wall ideotype among the tested for optimal performance for various uses, and maize plants should be specifically bred for each particular application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170779 | PMC |
http://dx.doi.org/10.1186/s12870-021-03040-3 | DOI Listing |
Pestic Biochem Physiol
November 2025
State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:
The rice foot rot disease caused by Dickeya oryzae is an important bacterial disease that could cause tremendous economic losses. The virulence factor modulating cluster (Vfm) quorum sensing (QS) system, a major virulence regulatory mechanism conserved in the Dickeya genus, controls the production of zeamines and various extracellular cell wall degradation enzymes in D. oryzae.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China. Electronic address:
This study reported a modified hydrothermal solvent method for preparing lignin microspheres (LNSs) with controllable size and morphology by precisely regulating the reaction temperature (160-220 °C). Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were employed to evaluate the structure, morphological, and dimensional attributes of lignin microspheres, and the synthesis mechanism was discussed. The antibacterial efficacy of the hydrothermally treated lignin microspheres (HTLNSs) was evaluated through phosphate-buffered saline (PBS) culture assays, as well as by assessing nucleic acid and protein leakage, and their inhibitory effect on cell membrane permeability.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China; Sichuan Ecological Protection and Construction Engineering Technology Research Centre, Sichuan University, Chengdu, 610065, China. Electronic address: sh
Toxic metal ion contamination poses a significant environmental challenge, severely impacting plant growth, development, and reproduction. To cope with metal-induced stress, plants have evolved diverse molecular and physiological mechanisms. Among these, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family, which encodes enzymes responsible for cell wall remodeling, plays a crucial role in enhancing plant resilience to metal ion stress.
View Article and Find Full Text PDFPlant Commun
September 2025
National Key Laboratory for Development and Utilization of Forest Food Resources, International Research Center for Plant Cell Wall, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Int J Biol Macromol
September 2025
Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt. Electronic address:
The growing demand for sustainable agriculture imposes innovative biocontrol strategies to mitigate phytopathogen threats while reducing dependence on chemical pesticides. This review explores the current knowledge on enzyme-based biocontrol, focusing on hydrolytic enzymes (e.g.
View Article and Find Full Text PDF