Biological Applications of Electron Paramagnetic Resonance Viscometry Using a C-Labeled Trityl Spin Probe.

Molecules

In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alterations in viscosity of biological fluids and tissues play an important role in health and diseases. It has been demonstrated that the electron paramagnetic resonance (EPR) spectrum of a C-labeled trityl spin probe (C-dFT) is highly sensitive to the local viscosity of its microenvironment. In the present study, we demonstrate that X-band (9.5 GHz) EPR viscometry using C-dFT provides a simple tool to accurately measure the microviscosity of human blood in microliter volumes obtained from healthy volunteers. An application of low-field L-band (1.2 GHz) EPR with a penetration depth of 1-2 cm allowed for microviscosity measurements using C-dFT in the living tissues from isolated organs and in vivo in anesthetized mice. In summary, this study demonstrates that EPR viscometry using a C-dFT probe can be used to noninvasively and rapidly measure the microviscosity of blood and interstitial fluids in living tissues and potentially to evaluate this biophysical marker of microenvironment under various physiological and pathological conditions in preclinical and clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125944PMC
http://dx.doi.org/10.3390/molecules26092781DOI Listing

Publication Analysis

Top Keywords

electron paramagnetic
8
paramagnetic resonance
8
c-labeled trityl
8
trityl spin
8
spin probe
8
ghz epr
8
epr viscometry
8
viscometry c-dft
8
measure microviscosity
8
living tissues
8

Similar Publications

Enhanced degradation of phenol by VUV/SPC synergism: Promotion of •OH and •CO formation.

J Hazard Mater

September 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.

A novel vacuum ultraviolet (VUV)-activated sodium percarbonate (SPC) system (VUV/SPC) was developed for efficient degradation of micropollutants such as phenol. The VUV/SPC system achieved 98.4 % phenol removal within 3 min, with pseudo-first-order rate constants 4.

View Article and Find Full Text PDF

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF

Synergistic interface and oxygen/nitrogen vacancy engineering in g-CN/CuO under high pressure for efficient CO photoreduction.

J Colloid Interface Sci

September 2025

WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; Mitsui Chemicals, Inc -.Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan. Electronic address:

This study explores highly active nitride-based g-CN/CuO photocatalysts for CO photoconversion by synthesizing them through high-pressure torsion (HPT) straining. Data indicate that increasing the applied strain under high pressure promotes vacancy formation and improves the electronic interaction at the g-CN/CuO interphases, enabling superior charge separation and extended light absorption. The generation of dual vacancies of oxygen and nitrogen is verified by electron paramagnetic resonance and Fourier transform infrared spectroscopic methods, and the generation of a type-II heterojunction is confirmed by band structure analysis.

View Article and Find Full Text PDF

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF