98%
921
2 minutes
20
Sea level rise (SLR) poses a hazard to ecosystems and economies in low-lying coastal and estuarine areas. To better understand the potential impacts of SLR in estuaries, a comprehensive review of existing theory, literature, and assessment tools is undertaken. In addition, several conceptual models are introduced to assist in understanding interlinked estuarine processes and their complex responses to SLR. This review indicates that SLR impacts in estuaries should not be assessed via static (bathtub) approaches as they fail to consider important hydrodynamic effects such as tidal wave amplification, dampening, and reflection. Where hydrodynamic models are used, the existing literature provides a relatively detailed understanding of how SLR will affect estuarine hydrodynamics (e.g., tides and inundation regimes). With regards to the current understanding of, and ability to model, the connections between altered hydrodynamics (under SLR) and dependent geomorphic, ecological, and bio-geochemical processes, significant knowledge gaps remain. This is of particular concern as there is currently a paradigm shift towards more integrated and holistic management of estuaries. Estuarine management under accelerating SLR is likely to become increasingly complex, as decision-making will be undertaken with uncertainty. As such, this review highlights that there is a fundamental requirement for more sophisticated and interdisciplinary studies that integrate physical, ecological, bio-geochemical, and geomorphic responses of estuaries to SLR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.146470 | DOI Listing |
J Mech Behav Biomed Mater
September 2025
College of Materials Science and Engineering, Hainan University, Haikou, 570228, China. Electronic address:
Deep-sea hydrothermal vents are renowned for being among the most extreme environments on Earth. However, the mussel shells found in these vent sites demonstrate remarkable productivity, despite being subjected to high pressure as well as unusual levels of heavy metals, pH, temperature, CO, and sulphides. To comprehend how these mussels endure such extreme conditions, a systematic comparative study was conducted, focusing on the unique chemical composition, structural designs, and mechanical properties of hydrothermal vent mussels (Bathymodiolus aduloides) in comparison to shallow-water mussels (Mytilus edulis).
View Article and Find Full Text PDFFish Shellfish Immunol
September 2025
College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China. Electronic address:
Sea perch is one of the most important fish species farmed in China. However, the frequent outbreak of viral diseases induced by sea perch iridovirus (SPIV) always caused high mortality and heavy economic losses in sea perch aquaculture. Up to now, no effective countermeasures against SPIV infection have been established.
View Article and Find Full Text PDFSci Total Environ
September 2025
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India. Electronic address:
Extreme rainfall during the Indian Summer Monsoon (ISM) accounts for approximately 27 % of the total seasonal rainfall. Most of this moisture is transported from the Indian Ocean. Amid ongoing warming of the Indian Ocean, 2023 stood out as one of the warmest monsoon years on record.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
St Abbs Marine Station, The Harbour, St Abbs TD14 5PW, United Kingdom. Electronic address:
The offshore renewable energy industry is expanding rapidly due to decarbonisation commitments and need for energy security. This will change the marine environment in ways that are not fully understood, including more subsea power cables in the sea. Movement of electricity through these cables generates an electromagnetic field (EMF), which might affect marine species.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. Electronic address:
While mercury (Hg) concentration and isotope analyses play pivotal roles in understanding contamination levels and Hg sources, complex hydrodynamics often obscure Hg transport pathways from source to sink. We applied hydrodynamic modeling with Hg stable isotopes to unravel source-specific contamination processes and propose effective management strategies in an estuarine system (Yeongil Bay) impacted by Hg-contaminated riverine input (Hyeongsan River) in Korea. Sediment isotope data revealed contributions of three sources: legacy Hg from the river, regional background Hg, and atmospheric Hg sources.
View Article and Find Full Text PDF