Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endogenous RNA interference (RNAi) pathways regulate a wide range of cellular processes in diverse eukaryotes, yet in the ciliated eukaryote, , the cellular purpose of RNAi pathways that generate ∼23-24 nucleotide (nt) small (s)RNAs has remained unknown. Here, we investigated the phenotypic and gene expression impacts on vegetatively growing cells when genes involved in ∼23-24 nt sRNA biogenesis are disrupted. We observed slower proliferation and increased expression of genes involved in DNA metabolism and chromosome organization and maintenance in sRNA biogenesis mutants Δ, Δ, and Δ. In addition, Δ and Δ cells frequently exhibited enlarged chromatin extrusion bodies, which are nonnuclear, DNA-containing structures that may be akin to mammalian micronuclei. Expression of homologous recombination factor Rad51 was specifically elevated in Δ and Δ strains, with Rad51 and double-stranded DNA break marker γ-H2A.X localized to discrete macronuclear foci. In addition, an increase in Rad51 and γ-H2A.X foci was also found in knockouts of TWI8, a macronucleus-localized PIWI protein. Together, our findings suggest that an evolutionarily conserved role for RNAi pathways in maintaining genome integrity may be extended even to the early branching eukaryotic lineage that gave rise to .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694037PMC
http://dx.doi.org/10.1091/mbc.E20-10-0631DOI Listing

Publication Analysis

Top Keywords

rnai pathways
12
∼23-24 nucleotide
8
nucleotide small
8
genes involved
8
srna biogenesis
8
disruption ∼23-24
4
small rna
4
rna pathway
4
pathway elevates
4
elevates dna
4

Similar Publications

Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.

View Article and Find Full Text PDF

Injury-induced Neuregulin-EGFR signaling from muscle mobilizes stem cells for whole-body regeneration in Acoels.

Dev Biol

September 2025

Department of Molecular Biosciences, Northwestern University, Evanston IL 60208; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston IL 60208. Electronic address:

The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel Hofstenia miamia undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in regeneration. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.

View Article and Find Full Text PDF

TIMM8A-TIMM13 Complex Exerts Oncogenic Functions in Lung Cancer.

Oncol Res

September 2025

Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.

Objectives: Lung cancer represents a major global healthcare challenge, characterized by high annual incidence and mortality rates worldwide. Although targeted therapies for lung cancer have advanced, treatment outcomes for advanced-stage patients remain suboptimal. This investigation examines the role of the translocase of the inner mitochondrial membrane (TIMM)8A-TIMM13 complex in lung cancer and evaluates its potential as a novel therapeutic target.

View Article and Find Full Text PDF

Effects of microbial infection on key gene expression in the Toll signaling pathway and immune response in Myzus persicae.

Pestic Biochem Physiol

November 2025

Institute of Entomology, Guizhou University, Guizhou Key Laboratory of Agricultural Biosecurity, Guiyang 550025, China.

The Toll signaling pathway serves as a crucial regulatory mechanism in the insect innate immune system, playing a pivotal role in defending against pathogenic microorganisms. However, the specific functions of aphids' unique immune system and Toll signaling pathway remain poorly understood. In this study, we systematically analyzed 12 key genes associated with the Toll signaling pathway in Myzus persicae.

View Article and Find Full Text PDF

Disruption of egg and nymph development via RNAi-mediated Glutamine: fructose-6-phosphate aminotransferase knockdown in Locusta migratoria: A promising strategy for pest management.

Pestic Biochem Physiol

November 2025

Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China.

Glutamine: fructose-6-phosphate aminotransferase (GFAT) is the first rate-limiting enzyme in the hexosamine biosynthetic pathway, which plays a crucial role in various biological processes, including chitin metabolism in insects. Locusta migratoria, a widespread and highly destructive agricultural pest, poses a significant threat due to its rapid reproduction and long-distance migration. In this study, we identified and characterized LmGFAT as a key regulator of locust development.

View Article and Find Full Text PDF