Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Loss of primary cilia in cells deficient for the tumor suppressor von Hippel Lindau (VHL) arise from elevated Aurora Kinase A (AURKA) levels. VHL in its role as an E3 ubiquitin ligase targets AURKA for degradation and in the absence of VHL, high levels of AURKA result in destabilization of the primary cilium. We identified NVP-BEZ235, a dual PI3K/AKT and mTOR inhibitor, in an image-based high throughput screen, as a small molecule that restored primary cilia in VHL-deficient cells. We identified the ability of AKT to modulate AURKA expression at the transcript and protein level. Independent modulation of AKT and mTOR signaling decreased AURKA expression in cells confirming AURKA as a new signaling node downstream of the PI3K cascade. Corroborating these data, a genetic knockdown of AKT in cells deficient for VHL rescued the ability of these cells to ciliate. Finally, inhibition of AKT/mTOR using NVP-BEZ235 was efficacious in reducing tumor burden in a 786-0 xenograft model of renal cell carcinoma. These data highlight a previously unappreciated signaling node downstream of the AKT/mTOR pathway via AURKA that can be targeted in VHL-null cells to restore ciliogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128866PMC
http://dx.doi.org/10.1038/s41598-021-89933-7DOI Listing

Publication Analysis

Top Keywords

signaling node
12
primary cilia
12
aurka
8
loss primary
8
cilia vhl-deficient
8
vhl-deficient cells
8
cells deficient
8
aurka expression
8
node downstream
8
cells
7

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) represents an aggressive cancer type associated with poor prognosis, often treated with neoadjuvant chemotherapy (NAC) using cisplatin-based regimens. However, cisplatin resistance limits therapeutic efficacy, necessitating a deeper understanding of resistance mechanisms. L-type amino acid transporter 1 (LAT1) plays a crucial role in amino acid uptake and is linked to cancer cell survival through activation of the mammalian target of rapamycin (mTOR) pathway.

View Article and Find Full Text PDF

HIC2 Suppresses Glioblastoma Progression via Transcriptional Repression of SEMA3A and Inhibition of TGF-β Signaling.

Free Radic Biol Med

September 2025

Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China. Electronic address:

Glioblastoma (GBM), the most aggressive primary brain tumor, is associated with dismal clinical outcomes and a critical lack of actionable therapeutic targets. Herein, we report that Hypermethylated in Cancer 2 (HIC2) is significantly downregulated in GBM tissues. In vitro, ectopic overexpression of HIC2 markedly suppresses GBM cell proliferation, invasion, and migration, while in vivo, it substantially inhibits tumor growth and prolongs survival in an orthotopic xenograft model (p < 0.

View Article and Find Full Text PDF

Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.

View Article and Find Full Text PDF

Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications.

View Article and Find Full Text PDF

Bleomycin (BLM) is an effective anticancer agent; however, its clinical use is limited by its tendency to induce pulmonary fibrosis (PF), a complication whose molecular mechanisms remain unclear. In this study, we established a BLM-induced C57BL/6 mouse model of PF and applied total RNA-seq in combination with network toxicology approaches to investigate the role of long noncoding RNAs (lncRNAs) in this process. The lncRNA Xist was identified as a hub node in the network, regulating the expression of its target Mmp25 via interaction with miR-34a-5p and miR-449c-5p.

View Article and Find Full Text PDF