A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimized node-level capsule graph neural network for subject-independent emotion recognition from EEG signals. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications. A Node-Level Capsule Graph Neural Network (NCGNN) is then used to correctly recognize emotions like calm, happy, sad, and furious based on the features that have been collected. Generally speaking, the NCGNN classifier does not provide optimization techniques for adjusting parameters to ensure precise emotion recognition. Hence, propose to utilize the Piranha Foraging Optimization Algorithm (PFOA) to enhance Node-Level Capsule Graph Neural Network, accurately categorize the emotion level. Then, the proposed NLCGNN-SIER-EEG is excluded in Python and the performance metrics like Recall, Accuracy, Precision, Specificity, F1 score and RoC. In the end, the performance of NLCGNN-SIER-EEG technique provides 19.57%, 24.37% and 34.15% high accuracy, 22.12%, 26.82% and 28.52% higher Precision and 23.26%, 28.17% and 29.43% higher recall while compared with existing like Subject-independent emotion recognition based on EEG data using VMD and deep learning (SIER-EEG-VMD-DL), Emotion recognition system based on two-level ensemble of deep-convolutional neural network models (ERS-TLE-DCNN), and human emotion recognition based on EEG data using principal component analysis and artificial neural networks (EEH-HER-ANN), respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15368378.2025.2541792DOI Listing

Publication Analysis

Top Keywords

emotion recognition
20
neural network
16
node-level capsule
12
capsule graph
12
graph neural
12
subject-independent emotion
12
eeg data
12
deep learning
8
labelled eeg
8
emotional states
8

Similar Publications