Open-top axially swept light-sheet microscopy.

Biomed Opt Express

Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Open-top light-sheet microscopy (OT-LSM) is a specialized microscopic technique for high throughput cellular imaging of large tissue specimens including optically cleared tissues by having the entire optical setup below the sample stage. Current OT-LSM systems had relatively low axial resolutions by using weakly focused light sheets to cover the imaging field of view (FOV). In this report, open-top axially swept LSM (OTAS-LSM) was developed for high-throughput cellular imaging with improved axial resolution. OTAS-LSM swept a tightly focused excitation light sheet across the imaging FOV using an electro tunable lens (ETL) and collected emission light at the focus of the light sheet with a camera in the rolling shutter mode. OTAS-LSM was developed by using air objective lenses and a liquid prism and it had on-axis optical aberration associated with the mismatch of refractive indices between air and immersion medium. The effects of optical aberration were analyzed by both simulation and experiment, and the image resolutions were under 1.6µm in all directions. The newly developed OTAS-LSM was applied to the imaging of optically cleared mouse brain and small intestine, and it demonstrated the single-cell resolution imaging of neuronal networks. OTAS-LSM might be useful for the high-throughput cellular examination of optically cleared large tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086456PMC
http://dx.doi.org/10.1364/BOE.419030DOI Listing

Publication Analysis

Top Keywords

optically cleared
12
open-top axially
8
axially swept
8
light-sheet microscopy
8
cellular imaging
8
otas-lsm developed
8
high-throughput cellular
8
light sheet
8
optical aberration
8
imaging
6

Similar Publications

Background: The m.3243A>G mutation in the MT-TL1 gene is the most common mtDNA mutation. The mutation can lead to a spectrum of conditions, including diabetes, hearing loss, heart and muscle involvement, encephalopathy and epilepsy, gastrointestinal problems, and vision impairment, often occurring concurrently-collectively referred to as MELAS (mitochondrial encephalopathy lactic acidosis and stroke-like episodes) syndrome.

View Article and Find Full Text PDF

All-In-One Iontronic Sensing Aligner for High-Precision 3D Orthodontic Force Monitoring.

Adv Sci (Weinh)

September 2025

Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key

Clear aligners offer aesthetic and comfort advantages in orthodontics, yet their ability to deliver effective forces relies heavily on empirical judgment or large-scale optical scanning, lacking real-time quantitative evaluation. Integrating pressure sensors into aligners is a promising solution, but challenges in miniaturization, multi-dimensional sensing, measurement accuracy, and biocompatibility hinder clinical application. Here, an all-in-one Orthodontic Force Acquisition System (OFAS) is presented that enables real-time, 3D force monitoring using a cross-shaped iontronic sensing array and an origami-inspired, wireless battery-free readout circuit miniaturized for single-tooth placement.

View Article and Find Full Text PDF

Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.

View Article and Find Full Text PDF

Light-emitting diode-derived blue light overexposure accelerates corneal endothelial cell aging by inducing abnormal ROS accumulation.

J Photochem Photobiol B

September 2025

The First Affiliated Hospital, Department of Ophthalmology, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China; Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center

Blue light, defined as short-wavelength visible light ranging from 400 to 500 nm, is recognized for its high energy within the visible light spectrum. The prevalent use of light-emitting diodes (LEDs) has significantly increased exposure to blue light. Corneal endothelial cells (CECs) playing a crucial role in maintaining corneal transparency to get clear visual field.

View Article and Find Full Text PDF

High Efficiency Labeling of nerve Fibers in cleared tissue for light-sheet microscopy.

J Neurosci Methods

September 2025

European Laboratory for Non-linear Spectroscopy, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; National Institute of Optics -National Research Council (CNR-INO), 50125 Sesto Fiorentino, Italy. Electronic address:

Background: Tissue clearing techniques combined with light-sheet fluorescence microscopy (LSFM) enable high-resolution 3D imaging of biological structures without physical sectioning. While widely used in neuroscience to determine brain architecture and connectomics, their application for spinal cord mapping remains more limited, posing challenges for studying demyelinating diseases like multiple sclerosis. Myelin visualization in cleared tissues is particularly difficult due to the lipid-removal nature of most clearing protocols, and alternative immunolabeling approaches failed to reach satisfying results.

View Article and Find Full Text PDF