Decadal variability in land carbon sink efficiency.

Carbon Balance Manag

Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The climate mitigation target of limiting the temperature increase below 2 °C above the pre-industrial levels requires the efforts from all countries. Tracking the trajectory of the land carbon sink efficiency is thus crucial to evaluate the nationally determined contributions (NDCs). Here, we define the instantaneous land sink efficiency as the ratio of natural land carbon sinks to emissions from fossil fuel and land-use and land-cover change with a value of 1 indicating carbon neutrality to track its temporal dynamics in the past decades.

Results: Land sink efficiency has been decreasing during 1957-1990 because of the increased emissions from fossil fuel. After the effect of the Mt. Pinatubo eruption diminished (after 1994), the land sink efficiency firstly increased before 2009 and then began to decrease again after 2009. This reversal around 2009 is mostly attributed to changes in land sinks in tropical regions in response to climate variations.

Conclusions: The decreasing trend of land sink efficiency in recent years reveals greater challenges in climate change mitigation, and that climate impacts on land carbon sinks must be accurately quantified to assess the effectiveness of regional scale climate mitigation policies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112069PMC
http://dx.doi.org/10.1186/s13021-021-00178-3DOI Listing

Publication Analysis

Top Keywords

sink efficiency
24
land carbon
16
land sink
16
land
9
carbon sink
8
climate mitigation
8
carbon sinks
8
emissions fossil
8
fossil fuel
8
sink
6

Similar Publications

Magnesium nanoparticles enhance growth and reshape the rhizosphere microbial community in soybean (Glycine max L.).

Plant Physiol Biochem

September 2025

Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Magnesium (Mg) is an essential macronutrient in plants, vital for photosynthesis, enzyme activation, protein synthesis, and carbon metabolism. This study evaluated the effects of magnesium oxide nanoparticles (MgO NPs) on growth, physiological performance, and rhizosphere microbial composition in soybean (Glycine max L.).

View Article and Find Full Text PDF

Platinum/nitrogen-co-doped TiO as photocatalyst and light-free catalytic adsorbent for gaseous formaldehyde.

J Colloid Interface Sci

September 2025

Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Platinum and nitrogen co-doped titanium dioxide (Pt/N-TiO, with 1 wt% Pt and an N/Ti molar ratio of 1) has been synthesized. This Pt/N co-doping strategy creates Schottky junctions, reduces the bandgap energy (3.25 to 2.

View Article and Find Full Text PDF

The Yellow Sea (YS) and the East China Sea (ECS), which comprise continental shelves with depths of 200 m or less, are recognized as some of the most productive coastal areas globally. Although this high productivity can contribute to carbon sequestration, the spatiotemporal variability of the biological pump remains unclear. To investigate this variability, net community production (NCP) in August 2020 was estimated based on high-resolution O/Ar measurements.

View Article and Find Full Text PDF

is a medicinal and ornamental herbaceous plant with significant economic value, as its tuberous roots are used for medicinal purposes. However, the current production of medicinal plants is characterized by wasteful use of resources and ecological risks caused by the unreasonable application of nitrogen fertilizers. In this study, based on uniform application of phosphorus and potassium fertilizers, six nitrogen application levels were set in pot experiments (expressed as N): N0: 0 kg/ha, N1: 208.

View Article and Find Full Text PDF

Distinct physiological and anatomical traits can lead to substantial variation in photosynthetic efficiency among plant varieties, which may, in turn, impact agronomically important traits. We conducted a comprehensive comparative analysis of leaf physiology, anatomy and biochemistry in Solanum lycopersicum (LEA) a modern inbred variety suited for the processing industry and Solanum pennellii (Lost accession LA5240) a drought-tolerant, green-fruited wild species to investigate differences in photosynthetic performance and stomatal physiology. Lost exhibited higher photosynthetic capacity due to both biochemical and anatomical features.

View Article and Find Full Text PDF