Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellular receptors play an important role in entry and cell to cell spread of morbillivirus infections. The cells expressing SLAM and Nectin-4 have been used for successful and efficient isolation of canine distemper virus (CDV) in high titre. There are several methods for generation of cells expressing receptor molecules. Here, we have used a comparatively cheaper and easily available method, pcDNA 3.1 (+) for engineering Vero cells to express SLAM gene of goat, sheep and dog origin (Vero/Goat/SLAM (VGS), Vero/Sheep/SLAM (VSS) and Vero/Dog/SLAM (VDS), respectively). The generated cell lines were then compared to test their efficacy to support CDV replication. CDV could be grown in high titre in the cells expressing SLAM and a difference of log two could be recorded in virus titre between VDS and native Vero cells. Also, CDV could be grown in a higher titre in VDS as compared to VGS and VSS. The finding of this study supports the preferential use of SLAM expressing cells over the native Vero cells by CDV. Further, the higher titre of CDV in cells expressing dog-SLAM as compared to the cells expressing SLAM of non-CDV hosts (i.e. goat and sheep) points towards the preferential use of dog SLAM by the CDV and may be a plausible reason for differential susceptibility of small ruminants and Canines to CDV.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2021.104940DOI Listing

Publication Analysis

Top Keywords

cells expressing
20
goat sheep
12
expressing slam
12
vero cells
12
cells
9
canine distemper
8
distemper virus
8
cell lines
8
sheep dog
8
dog origin
8

Similar Publications

Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.

View Article and Find Full Text PDF

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.

View Article and Find Full Text PDF

Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.

Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.

View Article and Find Full Text PDF

Deciphering the molecular landscape of acute myeloid leukemia initiation and relapse: a systems biology approach.

Med Oncol

September 2025

Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.

View Article and Find Full Text PDF