Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer's disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038495PMC
http://dx.doi.org/10.3390/ijms22073746DOI Listing

Publication Analysis

Top Keywords

protein o-glcnacylation
24
high-fat diet
8
reduced protein
8
alzheimer's disease
8
insulin resistance
8
protein
6
o-glcnacylation
6
diet leads
4
reduced
4
leads reduced
4

Similar Publications

Targeting O-GlcNAcylated METTL3 impedes MDS/AML progression via diminishing SRSF1 mA modification.

Mol Ther

September 2025

Xi'an No. 1 Hospital, First Affiliated Hospital of Northwest University, School of Medicine, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology of Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an,

N6-methyladenosine (mA) modification, primarily regulated by methyltransferase-like protein 3 (METTL3), plays a pivotal role in RNA metabolism and leukemogenesis. However, the post-translational mechanisms governing METTL3 stability and function remain incompletely understood. Given the widespread occurrence of O-GlcNAcylation on nuclear and cytosolic proteins, we hypothesized that METTL3 might undergo O-GlcNAcylation, thereby influencing its stability and oncogenic function in myeloid malignancies.

View Article and Find Full Text PDF

Genetic manipulation of OGT enhances NK cell-mediated cytotoxicity in tumor immunity.

J Adv Res

September 2025

Center for Gene and Cell Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Advanced Bioconvergence, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

Introduction: Natural killer (NK) cells are essential effectors in immune surveillance and cancer immunotherapy, but their function is often compromised by metabolic stress and environmental factors within the tumor microenvironment (TME). O-GlcNAcylation, a post-translational modification, regulates immune responses, yet its impact on NK cell function and therapeutic potential in immune cell-based therapies remains underexplored.

Objectives: This study investigates the effects of O-GlcNAcylation on NK cell-mediated cytotoxicity and its potential as a therapeutic target to enhance tumor immunity.

View Article and Find Full Text PDF

O-GlcNAcylation of CEP44 Promotes Its Droplet Formation and Regulates Its Localization.

Cytoskeleton (Hoboken)

September 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Union Medical Center, the First Affiliated Hospital of Nankai University, Nankai University, Tianjin, China.

The centrosomal protein of 44 kDa (CEP44) is essential for centriole duplication, centrosome cohesion, and spindle integrity. It localizes to the proximal end of centrioles and associates with spindle microtubules. Liquid-liquid phase separation (LLPS) is a process by which biomolecules undergo demixing into distinct liquid-like phases, facilitating the formation of cellular condensates such as the centrosome.

View Article and Find Full Text PDF

O-GlcNAcylation: A molecular switch linking brain health to neurodegeneration.

Neural Regen Res

September 2025

College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, China.

Neurodegenerative disorders are typically caused by harmful protein accumulation and nerve cell damage. A post-translational modification called O-linked N-acetylglucosamine ylation acts as a critical regulator in these disorders by controlling protein behavior, cell signaling, and energy balance. This modification is dynamically balanced through the cooperative actions of O-linked N-acetylglucosamine transferase and O-GlcNAcase.

View Article and Find Full Text PDF

Comprehensive evaluation of cleavable bioorthogonal probes for site-specific O-GlcNAc proteomics.

Mol Cell Proteomics

August 2025

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA. Electronic address:

O-linked β-N-acetylglucosamine (O-GlcNAc) modification (i.e., O-GlcNAcylation) on proteins is an essential modification in physiology and pathology.

View Article and Find Full Text PDF