98%
921
2 minutes
20
Patient movement affects image quality in oral and maxillofacial cone-beam computed tomography imaging. While many efforts are made to minimize the possibility of motion during a scan, relatively little attention has been given to motion correction after acquisition. We propose a novel method which can improve the image quality after an oral and maxillofacial scan. The proposed method is based on our previous work and is a retrospective motion estimation and motion compensation (ME/MC) approach that iteratively estimates and compensates for rigid pose change over time. During motion estimation, image update and motion update are performed alternately in a multi-resolution scheme to obtain the motion. We propose use of a feature-based motion update and patch-based image update in the iterative estimation process, to alleviate the effect of limited scan field of view on estimation. During motion compensation, a fine-resolution image reconstruction was performed with compensation for the estimated motion. The proposed ME/MC method was evaluated with simulations, phantom and patient studies. Two experts in dentomaxillofacial radiology assessed the diagnostic importance of the resulting motion artifact suppression. The quality of the reconstructed images was improved after motion compensation, and most of the image artifacts were eliminated. Quantitative analysis by comparison to a reference image and by calculation of a sharpness metric agreed with the qualitative observation. The results are promising, and further evaluation is required to assess the clinical value of the proposed method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/abfa38 | DOI Listing |
J Craniofac Surg
September 2025
Scar and Wound Treatment Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
An expander capsule is a fibrous membrane that forms around an expander after tissue expansion. However, whether the capsule should be removed after the expander is removed remains controversial. The authors aimed to investigate the efficacy and safety of cervical capsulectomy for improving neck mobility and appearance after expanded flap transfer.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Mississippi, National Center for Physical Acoustics and Department of Physics and Astronomy, University, Mississippi 38677, USA.
Meniscus oscillations at interfaces between liquids, solids, and air significantly impact fluid dynamics and control. While idealized models exist, experimental data on capillary-gravity wave scattering involving meniscus effects remain limited. In this Letter, we systematically measured wave transmission past a surface-piercing barrier, focusing on meniscus effects.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Universidade Federal de Pernambuco, Núcleo de Tecnologia, Centro Acadêmico do Agreste, Avenida Marielle Franco, Caruaru-PE, 55014-900, Brazil.
Self-propulsion plays a crucial role in biological processes and nanorobotics, enabling small systems to move autonomously in noisy environments. Here, we theoretically demonstrate that a bound skyrmion-skyrmion pair in a synthetic antiferromagnetic bilayer can function as a self-propelled topological object, reaching speeds of up to a hundred million body lengths per second-far exceeding those of any known synthetic or biological self-propelled particles. The propulsion mechanism is triggered by the excitation of back-and-forth relative motion of the skyrmions, which generates nonreciprocal gyrotropic forces, driving the skyrmion pair in a direction perpendicular to their bond.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
ETH Zürich, Photonics Laboratory, CH-8093 Zürich, Switzerland.
Matter waves have been observed in double-slit experiments with microscopic objects, such as atoms or molecules. The wave function describing the motion of these objects must extend over a distance comparable to the slit separation, much larger than the characteristic size of the objects. Preparing such states for more massive objects, such as mechanical oscillators, remains an outstanding challenge.
View Article and Find Full Text PDFSci Adv
September 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China.
Acoustic transducers require films that demonstrate both toughness and fatigue resistance, presenting notable challenges when achieved through conventional nanoscale reinforcing strategies. Here, we found that the rib structure of a cicada's tymbal exhibits exceptional toughness and fatigue resistance, attributed to its unique architecture composed of alternating soft and stiff polymer layers. Inspired by this rib structure, we developed a robust artificial rib film (ARF) using a nanoconfined crystallization strategy that involves the deposition of soft polyethylene oxide and stiff phenol formaldehyde.
View Article and Find Full Text PDF