Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, the issue of iterative learning fault diagnosis (ILFD) and fault tolerant control (FTC) is studied for stochastic repetitive systems with Brownian motion. Different from existing fault diagnosis (FD) methods, a state/fault simultaneous estimation observer based on iterative learning method is designed. The convergence condition of the ILFD algorithm is given. By employing the fault estimation information, the FTC algorithm is proposed to compensate for the fault effect on the system and to keep the stochastic input-to-state stability of the control system. Finally, the simulation results of an induction motor system and a single-link robotic flexible manipulator system are given to show that the proposed method is validated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2021.03.030DOI Listing

Publication Analysis

Top Keywords

iterative learning
12
fault diagnosis
12
learning fault
8
fault tolerant
8
tolerant control
8
stochastic repetitive
8
repetitive systems
8
systems brownian
8
brownian motion
8
fault
7

Similar Publications

Efficient, Hierarchical, and Object-Oriented Electronic Structure Interfaces for Direct Nonadiabatic Dynamics Simulations.

J Chem Theory Comput

September 2025

Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.

We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. This framework streamlines the development of new interfaces by providing a reusable and extendable code base. It supports the computation of energies, gradients, various couplings─like spin-orbit couplings, nonadiabatic couplings, and transition dipole moments─and other properties for an arbitrary number of states with any multiplicities and charges.

View Article and Find Full Text PDF

Background: Transforming Clinical Practice Guideline (CPG) recommendations into computer readable language is a complex and ongoing process that requires significant resources, including time, expertise, and funds. The objective is to provide an extension of the widely used GIN-McMaster Guideline Development Checklist (GDC) and Tool for the development of computable guidelines (CGs).

Methods: Based on an outcome from the Human Centered Design (HCD) workshop hosted by the Guidelines International Network North America (GIN-NA), a team was formed to develop the checklist extension.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF

Deep learning has rapidly emerged as a promising toolkit for protein optimization, yet its success remains limited, particularly in the realm of activity. Moreover, most algorithms lack rigorous iterative evaluation, a crucial aspect of protein engineering exemplified by classical directed evolution. This study introduces DeepDE, a robust iterative deep learning-guided algorithm leveraging triple mutants as building blocks and a compact library of ∼1,000 mutants for training.

View Article and Find Full Text PDF

Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.

View Article and Find Full Text PDF