Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is associated with modifications in cerebral blood perfusion and autoregulation. Hence, neurovascular coupling (NC) alteration could become a biomarker of the disease. NC might be assessed in clinical settings through multimodal electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Multimodal EEG-fNIRS was recorded at rest in an ambulatory setting to assess NC and to evaluate the sensitivity and specificity of the methodology to AD. Global NC was evaluated with a general linear model (GLM) framework by regressing whole-head EEG power envelopes in three frequency bands (theta, alpha and beta) with average fNIRS oxy- and deoxy-hemoglobin concentration changes in the frontal and prefrontal cortices. NC was lower in AD compared to healthy controls (HC) with significant differences in the linkage of theta and alpha bands with oxy- and deoxy-hemoglobin, respectively ( = 0.028 and = 0.020). Importantly, standalone EEG and fNIRS metrics did not highlight differences between AD and HC. Furthermore, a multivariate data-driven analysis of NC between the three frequency bands and the two hemoglobin species delivered a cross-validated classification performance of AD and HC with an Area Under the Curve, AUC = 0.905 ( = 2.17 × 10). The findings demonstrate that EEG-fNIRS may indeed represent a powerful ecological tool for clinical evaluation of NC and early identification of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066873PMC
http://dx.doi.org/10.3390/biomedicines9040337DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
multimodal eeg-fnirs
8
three frequency
8
frequency bands
8
theta alpha
8
oxy- deoxy-hemoglobin
8
evidence neurovascular
4
neurovascular un-coupling
4
un-coupling mild
4
mild alzheimer's
4

Similar Publications

Estimated Glucose Disposal Rate and Risk of Stroke and Dementia in Nondiabetics: A UK Biobank Prospective Cohort Study.

Arterioscler Thromb Vasc Biol

September 2025

Institute of Cardiovascular Diseases and Department of Cardiology, Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu (K.L., H.M., W.J

Background: The estimated glucose disposal rate (eGDR) is a validated surrogate marker of insulin resistance. However, its association with stroke and dementia in nondiabetic populations remains insufficiently investigated.

Methods: This prospective cohort study included nondiabetic participants from the UK Biobank.

View Article and Find Full Text PDF

Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.

View Article and Find Full Text PDF

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Case Study 10: A 51-Year-Old Man With Psychosis, Decline in Self-Care, and Cognitive Deterioration.

J Neuropsychiatry Clin Neurosci

September 2025

Departments of Psychiatry and Neurology, Center for Brain/Mind Medicine, and Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston.

View Article and Find Full Text PDF

Neuroinflammation has emerged as a central and dynamic component of the pathophysiology underlying a wide range of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Far from being a secondary consequence of neuronal damage, inflammatory processes (mediated by microglia, astrocytes, peripheral immune cells, and associated molecular mediators) actively shape disease onset, progression, and symptomatology. This review synthesizes current knowledge on the cellular and molecular mechanisms that govern neuroinflammatory responses, emphasizing both shared and disease-specific pathways.

View Article and Find Full Text PDF