Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Driven by flexibility, precision, repeatability and eco-friendliness, laser-based technologies have attracted great interest to engineer or to analyze materials in various fields including energy, environment, biology and medicine. A major advantage of laser processing relies on the ability to directly structure matter at different scales and to prepare novel materials with unique physical and chemical properties. It is also a contact-free approach that makes it possible to work in inert or reactive liquid or gaseous environment. This leads today to a unique opportunity for designing, fabricating and even analyzing novel complex bio-systems. To illustrate this potential, in this paper, we gather our recent research on four types of laser-based methods relevant for nano-/micro-scale applications. First, we present and discuss pulsed laser ablation in liquid, exploited today for synthetizing ultraclean "bare" nanoparticles attractive for medicine and tissue engineering applications. Second, we discuss robust methods for rapid surface and bulk machining (subtractive manufacturing) at different scales by laser ablation. Among them, the microsphere-assisted laser surface engineering is detailed for its appropriateness to design structured substrates with hierarchically periodic patterns at nano-/micro-scale without chemical treatments. Third, we address the laser-induced forward transfer, a technology based on direct laser printing, to transfer and assemble a multitude of materials (additive structuring), including biological moiety without alteration of functionality. Finally, the fourth method is about chemical analysis: we present the potential of laser-induced breakdown spectroscopy, providing a unique tool for contact-free and space-resolved elemental analysis of organic materials. Overall, we present and discuss the prospect and complementarity of emerging reliable laser technologies, to address challenges in materials' preparation relevant for the development of innovative multi-scale and multi-material platforms for bio-applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001552PMC
http://dx.doi.org/10.3390/nano11030712DOI Listing

Publication Analysis

Top Keywords

laser ablation
8
laser
6
short-pulse lasers
4
lasers versatile
4
versatile tool
4
tool creating
4
creating novel
4
novel nano-/micro-structures
4
nano-/micro-structures compositional
4
compositional analysis
4

Similar Publications

This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.

View Article and Find Full Text PDF

Introduction: Synovial sarcoma (SS) is one of the most prevalent malignant soft tissue sarcomas in children and adolescents. Pediatric populations often present with atypical features, complicating the differentiation from benign intramuscular venous malformations (VMs).

​​case Presentation: An 11-year-old male with a four-year history of progressive right plantar pain and a compressible intramuscular mass.

View Article and Find Full Text PDF

In this study, silicon nanoparticles (NPs) were produced by pulsed laser ablation in a liquid, aiming to investigate the influence of a laser beam profile on the properties of the resultant NPs. Morphology, inner structure, and phase composition of the formed NPs were characterized by means of ultraviolet-visible spectroscopy, high-resolution transmission electron microscopy, and Raman and photoluminescence spectroscopies, and the correlation of the NP properties with the laser beam profile was studied. Three different beam profiles were selected, namely, a Bessel beam produced using an axicon, an annular profile formed using a combination of an axicon and a converging lens, and a Gaussian beam focused on the surface of a Si target using the same converging lens.

View Article and Find Full Text PDF

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

Plastic pollution in marine environments poses ecological risks, in part because plastic debris can release hazardous substances, such as metal-based additives. While microplastics have received considerable attention as vectors of contaminants, less is known about larger macroplastics and their role in the spatial and temporal redistribution of substances. In this study, pristine, store-bought plastic items and macroplastics recovered from the North Pacific Subtropical Gyre (NPSG) were analysed using Fourier-Transform Infrared Spectroscopy (FTIR) to identify polymer types, and bulk acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for total metal quantification.

View Article and Find Full Text PDF