98%
921
2 minutes
20
Background: Exudative wounds cause discomfort for patients. Introduction of a moisture sensor to dressings could facilitate change of dressings only when needed. The aim of this pilot study was to evaluate the ability of a newly developed moisture sensor to detect moisture in relation to the absorbing capacity of the dressing.
Materials And Methods: In five patients, with one leg ulcer each, three dressing changes per patient were observed. Interval of dressing change was according to clinical need and healthcare professional's decision. Sensor activation, dressing weight and complications were registered. To investigate the effect of dressing on sensor activation, half of the observations were made without an extra layer of non-woven between the dressing and sensor (Variant A), and half with (Variant B).
Results: The sensor indicated time for dressing change in six out of fifteen observations. Variants A and B did not differ regarding activation or the timing of the activation.
Conclusions: The addition of a moisture sensor for facilitating management of exudative wounds is promising. We recommend future larger studies evaluating the potential clinical benefits and risks of the addition of a moisture sensor. We also recommend evaluation of potential home monitoring of wounds by a moisture sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/srt.13042 | DOI Listing |
J Colloid Interface Sci
September 2025
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China. Electronic address:
Ionic conductive hydrogels show promise for flexible sensors in wearables and e-skins, but balancing mechanical strength with high conductivity remains challenging. Herein, a triple-network ionic conductive hydrogel based on poly(acrylic acid) (PAA) was developed, synergistically reinforced by dissolved cellulose (dCel) and aramid nanofibers (ANF), with Al/Zn bimetallic ions serving as the conductive medium. Intriguingly, dCel was in-situ generated using the concentrated Al/Zn bimetallic salt solutions as the cellulose solvent, following the complete dissolution of the pulp fibers driven by the intensive ionic hydration of Al/Zn ions.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, PR China. Electronic address:
Wearable sweat sensors offer noninvasive health monitoring through multiplexed biomarker analysis, delivering real-time diagnostics with continuous operational capability. However, chronic cutaneous interface hydration during prolonged monitoring induces adhesive delamination phenomena that manifest as signal attenuation, which fundamentally limits their clinical reliability. To address this challenge, we developed a thermodynamically adaptive polymer interface combining three functional components: mussel-inspired catechol moieties for moisture-tolerant adhesion, hydrophobic acrylates ensuring mechanical stability, and N-isopropylacrylamide enabling thermal responsiveness.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Overcoming the persistent challenges of high operating temperatures and poor selectivity in metal oxide semiconductor (MOS) gas sensors, this work enhances defect sites in the sensing material through heterostructure construction and builds mesoporous architectures using MOF-derived carbon skeletons as templates. The synergistic effects of multiple mechanisms significantly improve gas-sensing performance, successfully fabricating a ZnO/PCS flexible room-temperature gas sensor with exceptional room-temperature DMF detection capabilities. The nitrogen-containing porous carbon skeletons (PCSs) template shows a stable mesoporous microstructure with large pore volume.
View Article and Find Full Text PDFNano Lett
September 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
High-strength cellulose materials, endowed with both biocompatibility and lightweight characteristics, are accelerating the advancement of artificial intelligence technologies in wearable electronics. However, the abundance of hydroxyl groups on cellulose surfaces imparts pronounced hydrophilicity, severely constraining the cellulose's wet strength. This study proposes a noncovalent bonding strategy based on hydrogen bonding and electrostatic interactions and develops a Janus-type cellulose triboelectric material with an asymmetric wettability.
View Article and Find Full Text PDFTalanta
September 2025
Department of Cardiology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, China. Electronic address:
Disposable electrochemical aptasensors (DEAs) hold significant promise for different analyte detection across diverse fields, due to inherent advantages of rapid response, portability, low cost, and high sensitivity. This review systematically examines the design strategies, signal amplification methodologies, and recent advances in DEAs in the fields of environmental analysis, food safety monitoring, and medical diagnostics. Specifically, it critically evaluates construction strategies for screen-printed electrodes (SPEs) and paper-based electrodes, including substrate selection, ink formulations, and key fabrication techniques such as screen printing, inkjet printing, deposition methods, and direct-writing technologies.
View Article and Find Full Text PDF