98%
921
2 minutes
20
Novel photoactive and enzymatically active nanomotors were developed for efficient organic pollutant degradation. The developed preparation route is simple and scalable. Light-absorbing polypyrrole nanoparticles were equipped with a bi-enzyme [glucose oxidase/catalase (GOx/Cat)] system enabling the simultaneous utilization of light and glucose as energy sources for jet-induced nanoparticle movement and active radical production. The GOx utilizes glucose to produce hydrogen peroxide, which is subsequently degraded by Cat, resulting in the generation of active radicals and/or oxygen bubbles that propel the particles. Uneven grafting of GOx/Cat molecules on the nanoparticle surface ensures inhomogeneity of peroxide creation/degradation, providing the nanomotor random propelling. The nanomotors were tested for their ability to degrade chlorophenol, under various experimental conditions, that is, with and without simulated sunlight illumination or glucose addition. In all cases, degradation was accelerated by the presence of the self-propelled nanoparticles or light illumination. Light-induced heating also positively affects enzymatic activity, further accelerating nanomotor diffusion and pollutant degradation. In fact, the chemical and photoactivities of the nanoparticles led to more than 95% removal of chlorophenol in 1 h, without any external stirring. Finally, the quality of the purified water and the extent of pollutant removal were checked using an eco-toxicological assay, with demonstrated significant synergy between glucose pumping and sunlight illumination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c20055 | DOI Listing |
PLoS One
September 2025
Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Geosciences, University of Bremen, Bremen, Germany.
Surveillance monitoring of shallow groundwater revealed that redox conditions can vary on a small scale. Therefore, the aim of this study was to categorize redox conditions in the groundwater of Lower Saxony, Germany, and to analyze the spatial distribution and trends of parameters related to redox conditions during surveillance monitoring from 1957 to 2015 in Lower Saxony, Germany. Methodically, trends were considered by applying the Mann-Kendall test and redox conditions of groundwater were classified according to the scheme of Jurgens et al.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
October 2025
Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea.
Background: Fine particulate matter has developmental toxicity, and midgestation is an important period for the development of foetal skeletal muscle. The ability of exercise to modulate skeletal muscle damage in mice exposed to PM during gestation remains unclear.
Methods: Pregnant C57BL/6 mice were exposed to 50 μg/m PM for 2 h on five consecutive days starting at embryonic day 12.
J Agric Food Chem
September 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Silica nanoparticles (SiONPs), as emerging foliar nanofertilizers, demonstrate promising potential in agriculture. However, whether foliar application of SiONPs alters belowground soil metabolites and microbe composition and abundance remains largely unknown. In this study, 3-week-old cucumber plants were foliar-sprayed with fumed or Stöber SiO NPs dosing at -4 mg of NPs per plant for 5 days.
View Article and Find Full Text PDF