Dynamic tensile properties, deformation, and failure testing of impact-loaded coal samples with various water content.

Sci Rep

State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Disc coal samples with different water content were tested using the split Hopkinson press bar test system. Their dynamic tensile failure process was monitored via an ultra-high-speed digital image correlation system. The deformation trend and failure characteristics as a function of the water content were analyzed, and the water content effect on dynamic mechanical properties was investigated. The results demonstrated that the dynamic stress-strain curve of the coal samples consisted of four stages. As the water content increased, the coal sample brittleness degraded, while its ductility was enhanced. Quadratic polynomial functions can describe dynamic peak stress, peak strain, and loading pressure. Under different loading pressures, the dynamic peak stress exhibited a concave bending trend as the water content increased. The coal sample's dynamic tensile strength had a strong rate correlation, and the saturated coal sample exhibited the highest rate correlation. Under high-rate loading, the inertia effect and the Stefan effect of water in coal samples hinder the initiation and propagation of coal sample cracks, improving the coal sample's strength. The research results provide a basic theoretical basis for the prevention and control of rock burst in coal mines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007724PMC
http://dx.doi.org/10.1038/s41598-021-86610-7DOI Listing

Publication Analysis

Top Keywords

water content
24
coal samples
16
dynamic tensile
12
coal sample
12
coal
10
samples water
8
content increased
8
increased coal
8
dynamic peak
8
peak stress
8

Similar Publications

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.

View Article and Find Full Text PDF

Probing the Influence of Water on the Molecular Mobility of PVP/VA using Terahertz Spectroscopy.

Mol Pharm

September 2025

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.

The presence of water significantly impacts the physical stability of amorphous solid dispersions (ASDs) by altering polymer molecular mobility. This study investigates the influence of low levels of absorbed water on the molecular dynamics and glass transition behavior of amorphous poly(vinylpyrrolidone--vinyl acetate) (PVP/VA). Melt-quenched PVP/VA discs were conditioned at controlled relative humidities (RH 8.

View Article and Find Full Text PDF

Unlabelled: The queen snapper ( Valenciennes in Cuvier & Valenciennes, 1828) is a deep-sea snapper whose commercial importance continues to increase in the US Caribbean. However, little is known about the biology and ecology of this species. In this study, the presence of a fine-scale population structure and genetic diversity of queen snapper from Puerto Rico was assessed through 16,188 SNPs derived from the Restriction site Associated DNA Sequencing (RAD-Seq) technique.

View Article and Find Full Text PDF