The RAC1 activator Tiam1 regulates centriole duplication through controlling PLK4 levels.

J Cell Sci

Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK.

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Centriole duplication is tightly controlled to maintain correct centriole number through the cell cycle. Key to this is the regulated degradation of PLK4, the master regulator of centriole duplication. Here, we show that the Rac1 guanine nucleotide exchange factor (GEF) Tiam1 localises to centrosomes during S-phase, where it is required for the maintenance of normal centriole number. Depletion of Tiam1 leads to an increase in centrosomal PLK4 and centriole overduplication, whereas overexpression of Tiam1 can restrict centriole overduplication. Ultimately, Tiam1 depletion leads to lagging chromosomes at anaphase and aneuploidy, which are potential drivers of malignant progression. The effects of Tiam1 depletion on centrosomal PLK4 levels and centriole overduplication can be rescued by re-expression of both wild-type Tiam1 and catalytically inactive (GEF*) Tiam1, but not by Tiam1 mutants unable to bind to the F-box protein βTRCP (also known as F-box/WD repeat-containing protein 1A) implying that Tiam1 regulates PLK4 levels through promoting βTRCP-mediated degradation independently of Rac1 activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075378PMC
http://dx.doi.org/10.1242/jcs.252502DOI Listing

Publication Analysis

Top Keywords

centriole duplication
12
plk4 levels
12
centriole overduplication
12
tiam1
10
tiam1 regulates
8
centriole
8
levels centriole
8
centriole number
8
centrosomal plk4
8
tiam1 depletion
8

Similar Publications

O-GlcNAcylation of CEP44 Promotes Its Droplet Formation and Regulates Its Localization.

Cytoskeleton (Hoboken)

September 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Union Medical Center, the First Affiliated Hospital of Nankai University, Nankai University, Tianjin, China.

The centrosomal protein of 44 kDa (CEP44) is essential for centriole duplication, centrosome cohesion, and spindle integrity. It localizes to the proximal end of centrioles and associates with spindle microtubules. Liquid-liquid phase separation (LLPS) is a process by which biomolecules undergo demixing into distinct liquid-like phases, facilitating the formation of cellular condensates such as the centrosome.

View Article and Find Full Text PDF

Optineurin (OPTN), a multifunctional cytosolic protein, is recognized as an autophagy adaptor. Its association with neurodegenerative diseases, like ALS, triggered extensive research. OPTN has been found in intracellular organelles, including the mitochondria, Golgi body, endosomes, microtubules, and the nucleus.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction is a major mechanism in the development of diabetic cardiomyopathy (DCM). However, the exact pathogenesis remains unclear, resulting in a lack of targeted clinical therapies. The aim of this study is to elucidate the mechanism by which ANXA11 affects DCM by inducing mitochondrial dysfunction through β-hydroxybutyrylation (kbhb).

View Article and Find Full Text PDF

DNA damage can result from external sources or occur during programmed genome rearrangements in processes like immunity or meiosis. To maintain genome integrity, cells activate DNA repair pathways that prevent harmful outcomes such as cancer or immune dysfunction. In this study, we uncover a novel role for DNA damage during the terminal differentiation of multiciliated cells (MCCs).

View Article and Find Full Text PDF

It was recently shown that inhibition of polo-like kinase 4 (PLK4) induces -dependent synthetic lethality in cancers with chromosome 17q-encoded copy number gain due to cooperative regulation of centriole duplication and mitotic spindle nucleation. We show here that chromosome 17q/TRIM37 gain is a pathognomonic feature of high-risk neuroblastoma and renders patient-derived cell lines hypersensitive to the novel PLK4 inhibitor RP-1664. We demonstrate that centriole amplification at low doses of RP-1664 contributes to this sensitivity in a - and -independent fashion.

View Article and Find Full Text PDF