Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Monocytes and vascular endothelial growth factor (VEGF) have profound effects on tissue injury and repair. In ventilator-induced lung injury (VILI), monocytes, the majority of which are Ly6C+high, and VEGF are known to initiate lung injury. However, their roles in post-VILI lung repair remain unclear. In this study, we used a two-hit mouse model of VILI to identify the phenotypes of monocytes recruited to the lungs during the resolution of VILI and investigated the contributions of monocytes and VEGF to lung repair. We found that the lung-recruited monocytes were predominantly Ly6C+low from day 1 after the insult. Meanwhile, contrary to inflammatory cytokines, pulmonary VEGF decreased upon VILI but subsequently increased significantly on days 7 and 14 after the injury. There was a strong positive correlation between VEGF expression and proliferation of alveolar epithelial cells in lung sections. The expression pattern of VEGF mRNA in lung-recruited monocytes was similar to that of pulmonary VEGF proteins, and the depletion of monocytes significantly suppressed the increase of pulmonary VEGF proteins on days 7 and 14 after VILI. In conclusion, during recovery from VILI, the temporal expression patterns of pulmonary growth factors are different from those of inflammatory cytokines, and the restoration of pulmonary VEGF by monocytes, which are mostly Ly6C+low, is associated with pulmonary epithelial proliferation. Lung-recruited monocytes and pulmonary VEGF may play crucial roles in post-VILI lung repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978382PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248959PLOS

Publication Analysis

Top Keywords

pulmonary vegf
20
lung-recruited monocytes
16
monocytes pulmonary
12
lung injury
12
lung repair
12
vegf
11
monocytes
10
pulmonary
8
vascular endothelial
8
endothelial growth
8

Similar Publications

Silencing CD151 Gene in Donor Triple-Negative Breast Cancer Cells Attenuates Exosome-Driven Functions of Recipient Cells.

Exp Cell Res

September 2025

Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Sciences, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India. Electronic address:

CD151 is a tetraspanin, abnormally expressed in triple negative breast cancer (TNBC). It is a prominent component of exosomes, facilitating the secretion of proteins that promote metastasis and drug resistance. We have previously demonstrated that silencing the CD151 gene reduces metastasis in TNBC.

View Article and Find Full Text PDF

Hypoxia plays a critical role in regulating the progression of non-small cell lung cancer (NSCLC) by modulating the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), important components of TIME, can be regulated by hypoxic conditions. Unfortunately, the molecular mechanisms by which hypoxia regulates TAMs in TIME to affect NSCLC progression has not been fully delineated.

View Article and Find Full Text PDF

Airway obstruction and gender affect arterial stiffness in children with cystic fibrosis.

Turk J Pediatr

September 2025

Department of Cardiorespiratory Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.

Background: Vascular changes are observed in children with cystic fibrosis (cwCF), and gender-specific differences may impact arterial stiffness. We aimed to compare arterial stiffness and clinical parameters based on gender in cwCF and to determine the factors affecting arterial stiffness in cwCF.

Methods: Fifty-eight cwCF were included.

View Article and Find Full Text PDF

Targeting HMGB1 modulates cancer-associated fibroblasts and enhances radiotherapy in lung adenocarcinoma.

J Control Release

September 2025

Teaching and Research section of Nuclear Medicine, School of Basic Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China. Electronic address:

Radio-resistance remains a major challenge in the effective treatment of lung cancer. Cancer-associated fibroblasts (CAFs), the predominant cellular components in solid tumors, play a crucial role in tumor treatment and resistance. Thus, understanding the interactions between CAFs and tumor cells is key to overcoming radio-resistance in lung cancer.

View Article and Find Full Text PDF

Background: Predictors for checkpoint inhibitor-related pneumonitis (cinrPneumonitis) are desperately needed. This study aimed to investigate the pretreatment standardized uptake value (SUV) on [F]FDG-PET/CT of non-tumorous lung tissue as a predictive imaging marker for the development of cinrPneumonitis in 239 patients with lung cancer.

Methods: All patients with lung cancer receiving [F]Fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) prior to immune checkpoint inhibitor (ICI) therapy were included and retrospectively analyzed.

View Article and Find Full Text PDF