Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An iridium-catalyzed trifluoroacetic acid-promoted asymmetric cascade allylation/Pictet-Spengler cyclization reaction of azomethine ylides with aromatic allylic alcohols is reported. This protocol provides a facile and scalable method for the construction of 1,3,4-trisubstituted tetrahydroisoquinolines containing two stereogenic centers in good yields (up to 96%) with generally excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Furthermore, a series of aromatic heterocycle-fused piperidines were also obtained with excellent enantiocontrol by this methodology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.1c00709DOI Listing

Publication Analysis

Top Keywords

asymmetric cascade
8
cascade allylation/pictet-spengler
8
allylation/pictet-spengler cyclization
8
cyclization reaction
8
134-trisubstituted tetrahydroisoquinolines
8
iridium-catalyzed asymmetric
4
reaction enantioselective
4
enantioselective synthesis
4
synthesis 134-trisubstituted
4
tetrahydroisoquinolines iridium-catalyzed
4

Similar Publications

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF

Enantioselective Synthesis of Spirooxindole Derivatives through Lewis Acid-Catalyzed Michael Addition/Cyclization Cascade.

J Org Chem

September 2025

Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.

A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.

View Article and Find Full Text PDF

A three-step, one-pot, sequential cascade starting from simple feedstocks to increase complexity toward value-added chiral synthetic building blocks is reported. This is achieved by precisely integrating organic photocatalysis and noncovalent organocatalysis, often operating at dissimilar conditions and reaction media. In particular, this strategy is used to enable the direct transformation of readily available benzylic substrates, such as methylbenzenes, benzyl alcohols, or amines, into enantioenriched α-aminonitriles by benzylic CH photooxidation to their corresponding aldehydes, followed by in situ imine formation and final asymmetric organocatalytic Strecker reaction.

View Article and Find Full Text PDF

Dual-Functional Microneedles for In Situ Diagnosis and Biofilm-Targeted Therapy of Diabetic Periodontitis via Biomarker-Responsive Probes and Photothermal NO Nanomotors.

Anal Chem

September 2025

Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China.

Chronic periodontitis, a frequent complication of diabetes, is exacerbated by bacterial biofilms that drive progressive periodontal tissue destruction and systemic inflammation. Conventional treatments, utilizing mechanical debridement and systemic antibiotics, often fail to eradicate bacterial biofilms, promote antibiotic resistance, and lack real-time monitoring, leading to suboptimal therapeutic outcomes. Herein, we report a separable bilayer microneedle (MN) patch that enables localized, antibiotic-free, biofilm-targeted therapy and in situ biomarker-based monitoring for the integrated management of chronic periodontitis.

View Article and Find Full Text PDF

Future Trends in Asymmetric Organo-Metal Combined Catalysis.

ACS Cent Sci

August 2025

Hefei National Research Center of Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

Asymmetric organo-metal combined catalysis, which integrates the catalytic functions of chiral organocatalysts and metal complexes, enables the enantioselective formation of challenging chemical bonds and facilitates cascade transformations, often without the need for intermediate purification. Since its inception in 2001, this paradigm has evolved into a versatile strategy for the rapid construction of molecular complexity with a high level of enantioselectivity. In this Outlook, we have highlighted the most recent contributions to this field, showcasing exciting opportunities to overcome current efficiency limits.

View Article and Find Full Text PDF