98%
921
2 minutes
20
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, psychiatric symptoms and behavioral disorders, resulting in disability, and loss of self-sufficiency. To establish an AD-like mice model, investigate the behavioral performance, and explore the potential mechanism. Streptozotocin (STZ, 3 mg/kg) was microinjected bilaterally into the dorsal hippocampus of C57BL/6 mice, and the behavioral performance was observed. The serum concentrations of insulin and nesfatin-1 were measured by ELISA, and the activation of hippocampal microglia and astrocytes was assessed by immunohistochemistry. The protein expression of several molecular associated with the regulation of synaptic plasticity in the hippocampus and the pre-frontal cortex (PFC) was detected via western blotting. The STZ-microinjected model mice showed a slower bodyweight gain and higher serum concentration of insulin and nesfatin-1. Although there was no significant difference between groups with regard to the ability of balance and motor coordination, the model mice presented a decline of spontaneous movement and exploratory behavior, together with an impairment of learning and memory ability. Increased activated microglia was aggregated in the hippocampal dentate gyrus of model mice, together with an increase abundance of Aβ and Tau in the hippocampus and PFC. Moreover, the protein expression of NMDAR2A, NMDAR2B, SynGAP, PSD95, BDNF, and p-β-catenin/β-catenin were remarkably decreased in the hippocampus and the PFC of model mice, and the expression of p-GSK-3β (ser9)/GSK-3β were reduced in the hippocampus. A bilateral hippocampal microinjection of STZ could induce not only AD-like behavioral performance in mice, but also adaptive changes of synaptic plasticity against neuroinflammatory and endocrinal injuries. The underlying mechanisms might be associated with the imbalanced expression of the key proteins of Wnt signaling pathway in the hippocampus and the PFC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957014 | PMC |
http://dx.doi.org/10.3389/fnagi.2021.633495 | DOI Listing |
J Environ Pathol Toxicol Oncol
January 2025
Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.
Despite advancements in systemic therapy, the mortality rate for patients with metastatic melanoma remains around 70%, underscoring the imperative for alternative treatment strategies. Through the establishment of a chemoresistant melanoma model and a subsequent drug investigation, we have identified pacritinib, a medication designed for treating myelofibrosis and severe thrombocytopenia, as a potential candidate to overcome resistance to melanoma therapy. Our research reveals that pacritinib, administered at clinically achievable concentrations, effectively targets dacarbazine-resistant melanoma cells by suppressing IRAK1 rather than JAK2.
View Article and Find Full Text PDFJ Med Chem
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery o
Aberrant activation of fibroblast growth factor receptors (FGFRs) plays a critical role in tumorigenesis across multiple cancer types, driving the development of various FGFR inhibitors. Despite clinical advances, therapeutic efficacy remains limited by the emergence of drug resistance, primarily mediated by gatekeeper mutations in FGFRs. To overcome this challenge, we designed and synthesized a novel series of 7-(1-methyl-1-indole-3-yl)-5-pyrrolo[2,3-]pyrazine derivatives as covalent pan-FGFR inhibitors targeting both wild-type and gatekeeper mutants.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2025
University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.
Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Although clinical research has revealed microglia-related inflammatory and immune responses in bipolar disorder (BD) patient brains, it remains unclear how microglia contribute to the pathogenesis of BD. Here, we demonstrated that Serinc2 is associated with susceptibility to BD and showed a reduced expression in BDII patient plasma, which correlated with the disease severity. Using induced pluripotent stem cell (iPSC) models of sporadic and familial BDII patients, we found that Serinc2 expression showed deficits in iPSC-derived microglia-like cells, resulting in decreased synaptic pruning.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brasil.
Microsporidia causes opportunistic infections in immunosuppressed individuals. Mammals shed these spores of fungi in feces, urine, or respiratory secretions, which could contaminate water and food, thereby reaching the human body and causing infection. The oral route is the most common route of infection, although experiments have demonstrated that intraperitoneal and intravenous routes may also spread infection.
View Article and Find Full Text PDF