Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding neural selectivity is essential for optimizing medical applications of deep brain stimulation (DBS). We previously showed that modulation of the DBS waveform can induce changes in orientation-based selectivity, and that lengthening of DBS pulses or directional segmentation can reduce preferential selectivity for large axons. In this work, we sought to investigate a simple, but important question from a generalized perspective: how do the size and shape of the contact influence neural selectivity?We created multicompartment neuron models for several axon diameters and used finite element modeling with standard-sized cylindrical leads to determine the effects on changing contact size and shape on axon activation profiles and volumes of tissue activated. Contacts ranged in size from 0.04 to 16 mm, compared with a standard size of 6 mm.We found that changes in contact size are predicted to induce substantial changes in orientation-based selectivity in the context of a cylindrical lead, and changes in contact width or height can alter this selectivity. Smaller contact sizes were more effective in constraining neural activation to small, nearby axons. However, micro-scale contacts enable only limited spread of neural activation before exceeding standard charge density limitations; further, energetic efficiency is optimized by somewhat larger contacts.Small-scale contacts may be optimal for constraining stimulation in nearby grey matter and avoiding orientation-selective activation. However, given charge density limitations and energy inefficiency of micro-scale contacts, we predict that contacts sized similarly to or slightly smaller than segmented clinical leads may optimize energy efficiency while avoiding charge density limitations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440674PMC
http://dx.doi.org/10.1088/1741-2552/abeeaaDOI Listing

Publication Analysis

Top Keywords

contact size
12
size shape
12
charge density
12
density limitations
12
deep brain
8
brain stimulation
8
neural selectivity
8
changes orientation-based
8
orientation-based selectivity
8
changes contact
8

Similar Publications

Introduction: There are estimated to be 3.4 million patients in the UK living after a diagnosis of cancer. We know very little about their quality of life or healthcare usage.

View Article and Find Full Text PDF

Molecular Hybrid Bridging for Efficient and Stable Inverted Perovskite Solar Cells without a Pre-Deposited Hole Transporting Layer.

Adv Mater

September 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.

Establishing a low-resistance perovskite/ITO contact using self-assembled molecules (SAMs) is crucial for efficient hole transport in perovskite solar cells (PSCs) without a pre-deposited hole-transporting layer. However, SAMs at the buried interface often encounter issues like nonuniform distribution and molecular aggregation during the extrusion process, leading to significant energy loss. Herein, a molecular hybrid bridging strategy by incorporating a novel small molecule is proposed, (2-aminothiazole-4-yl)acetic acid (ATAA), featuring a thiazole ring and carboxylic acid group, along with the commonly used SAM, 4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), into the perovskite precursor to synergistically optimize the buried interface.

View Article and Find Full Text PDF

Multifunctional Photoactive Janus Nanofibrous Membranes for Unidirectional Water Transport and Remediation of Airborne Pathogens and Pollutants.

ACS Nano

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.

Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.

View Article and Find Full Text PDF

3D-Printed Microfiltration Membranes via Dual-Wavelength Microstereolithography.

ACS Omega

September 2025

Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft 2629HS, The Netherlands.

A new and sustainable membrane manufacturing method is 3D printing, which reduces the number of fabrication steps, waste production, and the corresponding CO emissions. It further enables fabricating membranes with well-defined pore size, shape, and configuration. Here, we study 3D printing of microfiltration membranes using a novel dual-wavelength microstereolithography method.

View Article and Find Full Text PDF

In this study, porous polysiloxane (PS)/multi-walled carbon nanotube (MWCNT) nanocomposite films were developed as high-performance triboelectric layers for flexible triboelectric nanogenerators (TENGs). TENGs convert mechanical motion into electricity and offer a promising solution for self-powered electronic systems. The nanocomposites were fabricated using a doctor blading method, and porosity was introduced a simple, scalable salt-leaching technique.

View Article and Find Full Text PDF