Sulforaphane Inhibits the Expression of Long Noncoding RNA H19 and Its Target APOBEC3G and Thereby Pancreatic Cancer Progression.

Cancers (Basel)

Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69117 Heidelberg, Germany.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant and the therapeutic options available usually have little impact on survival. Great hope is placed on new therapeutic targets, including long noncoding RNAs (lncRNAs), and on the development of new drugs, based on e.g., broccoli-derived sulforaphane, which meanwhile has shown promise in pilot studies in patients. We examined whether sulforaphane interferes with lncRNA signaling and analyzed five PDAC and two nonmalignant cell lines, patient tissues ( = 30), and online patient data ( = 350). RT-qPCR, Western blotting, MTT, colony formation, transwell and wound healing assays; gene array analysis; bioinformatics; in situ hybridization; immunohistochemistry and xenotransplantation were used. Sulforaphane regulated the expression of all of five examined lncRNAs, but basal expression, biological function and inhibition of H19 were of highest significance. H19 siRNA prevented colony formation, migration, invasion and Smad2 phosphorylation. We identified 103 common sulforaphane- and H19-related target genes and focused to the virus-induced tumor promoter APOBEC3G. APOBEC3G siRNA mimicked the previously observed H19 and sulforaphane effects. In vivo, sulforaphane- or H19 or APOBEC3G siRNAs led to significantly smaller tumor xenografts with reduced expression of Ki67, APOBEC3G and phospho-Smad2. Together, we identified APOBEC3G as H19 target, and both are inhibited by sulforaphane in prevention of PDAC progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920255PMC
http://dx.doi.org/10.3390/cancers13040827DOI Listing

Publication Analysis

Top Keywords

long noncoding
8
h19 target
8
colony formation
8
sulforaphane
6
h19
6
apobec3g
6
sulforaphane inhibits
4
expression
4
inhibits expression
4
expression long
4

Similar Publications

Objectives: To study the molecular mechanisms of LDH-loaded si-NEAT1 for regulating paclitaxel resistance and tumor-associated macrophage (TAM) polarization in breast cancer.

Methods: qRT-PCR and Western blotting were used to detect the expression of lncRNA NEAT1, miR-133b, and PD-L1 in breast cancer SKBR3 cells and paclitaxel-resistant SKBR3 cells (SKBR3-PR). The effects of transfection with si-NEAT1 and miR-133b mimics on MRP, MCRP and PD-L1 expressions and cell proliferation, migration and apoptosis were investigated using qRT-PCR, Western blotting, scratch and Transwell assays, and flow cytometry.

View Article and Find Full Text PDF

Long non-coding RNAs: Silent contributors to plant survival under abiotic stress.

Biochem Biophys Res Commun

September 2025

Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, H.P., 173234, India. Electronic address:

Abiotic challenges have a major impact on plant growth and development. Recent research has highlighted the role of long non-coding RNAs in response to these environmental stressors. Long non-coding RNAs are transcripts that are usually longer than 200 nucleotides with no potential for coding proteins.

View Article and Find Full Text PDF

In oxaliplatin-resistant gastric cancer (GC), multi-omics profiling combined with organoid libraries reveals altered metabolic pathways associated with chemoresistance. We identify a novel lactylation modification at K115 of Poly(RC)-binding protein 2 (PCBP2K115la), which confers functional oxaliplatin resistance. Mechanistic studies demonstrate that the long non-coding RNA BASP1-AS1 assembles a complex containing Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and lactate dehydrogenase A (LDHA), thereby activating LDHA enzymatic activity to increase lactate production.

View Article and Find Full Text PDF

The long noncoding RNA SNHG12 defines KEAP1 stability and ferroptosis susceptibility by targeting E3 ligase TRIM25.

J Biol Chem

September 2025

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China. Electronic address:

Ferroptosis is a novel type of programmed cell death caused by iron-dependent lipid peroxidation. Targeted induction of ferroptosis holds great promise for cancer treatment. SNHG, a newly recognized lncRNA family, has been reported to implicate in the proliferation, invasion, migration or drug resistance of cancer cells.

View Article and Find Full Text PDF