Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Extrapolating patterns from individuals to populations informs climate vulnerability models, yet biological responses to warming are uncertain at both levels. Here we contrast data on the heating tolerances of fishes from laboratory experiments with abundance patterns of wild populations. We find that heating tolerances in terms of individual physiologies in the lab and abundance in the wild decline with increasing temperature at the same rate. However, at a given acclimation temperature or optimum temperature, tropical individuals and populations have broader heating tolerances than temperate ones. These congruent relationships implicate a tight coupling between physiological and demographic processes underpinning macroecological patterns, and identify vulnerability in both temperate and tropical species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921436PMC
http://dx.doi.org/10.1038/s42003-021-01773-3DOI Listing

Publication Analysis

Top Keywords

heating tolerances
12
individuals populations
8
fish heating
4
heating tolerance
4
tolerance scales
4
scales individual
4
individual physiology
4
populations
4
physiology populations
4
populations extrapolating
4

Similar Publications

Stomatal regulation, leaf water relations, and leaf phenology are coordinated in tree species from the Sonoran Desert.

AoB Plants

October 2025

Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, Campus Hermosillo, Luis Donaldo Colosio s/n, Los Arcos, Hermosillo, Sonora CP 83250, México.

To cope with heat and water stress, evergreen and deciduous species from hot and arid deserts should adjust their stomatal conductance ( ) and leaf water potential (Ψ) regulation in response to changes in soil water availability, high temperatures, and vapour pressure deficits (VPDs). To test whether phenology induces changes in -Ψ coordination, we tested for associations between 14 leaf traits involved in leaf economics, hydraulics, and stomatal regulation, including minimum seasonal water potential (Ψ) and maximum ( ), turgor loss point (Ψ), osmotic potential (Ψ), leaf area (LA), and specific leaf area (SLA), across 12 tree species from the Sonoran Desert with contrasting phenology. We found that foliar phenology, leaf hydraulics, and leaf economic traits are coordinated across species and organized along the axis of physiological efficiency and safety in response to temperature and VPD.

View Article and Find Full Text PDF

Climate change threatens biodiversity and ecosystem services around the globe. Despite the importance of native bees as pollinators, there is evidence of global declines, and we know very little about how climate shapes their distributions now and into the future. In the current study, we combined large-scale seasonal field sampling and experimental acclimation to examine whether populations of an Australian bee, Exoneura robusta, vary in their capacity to adapt to different climates.

View Article and Find Full Text PDF

-HsfA1- module mediates heat priming-enhanced blast resistance in rice.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.

As global climate change exacerbates extreme heat events, the interplay between heat stress and blast disease resistance in rice remains poorly understood. In this study, through integrated transcriptome profiling and systematic phenotyping of mutants in several thermosensory pathways, we identified HsfA1 as a positive regulator of heat priming-enhanced blast resistance in rice. Systematic analysis of microRNA (miRNA) dynamics, bioinformatics prediction, and RNA pull-down experiments revealed that , a temperature-responsive miRNA, directly suppresses the expression of by targeting the second exon of messenger RNA (mRNA).

View Article and Find Full Text PDF

Introduction: Baked egg (BE) is generally well tolerated by children with egg allergy, and heated egg yolk (EY) is considered less allergenic than egg white (EW). Although these findings suggest that both BE and EY may be safer options for reintroduction, no studies have directly compared their safety with each other or with heated EW. This study aimed to compare the safety of oral food challenge (OFC) for reintroducing BE, EY, and EW in children with egg allergy.

View Article and Find Full Text PDF

Background: Escalating global temperatures pose an ongoing threat to cotton production by disrupting essential morphological, physiological, and metabolic processes during early plant development. These early stages are critical for crop establishment, yet the genetic basis of heat tolerance at this phase remains insufficiently characterized. Therefore, advancing our understanding of early-stage responses is essential for the development of heat-tolerant genotypes.

View Article and Find Full Text PDF