Epigallocatechin Gallate in Progressive MS: A Randomized, Placebo-Controlled Trial.

Neurol Neuroimmunol Neuroinflamm

From the Charité - Universitätsmedizin Berlin (R.R., C.C., M.S., A.U.B., J.D., K.K., H.Z., M.L., K.-D.W., J.B.-S., F.P.), Berlin, Germany; and Jens Würfel, University Basel, Basel, Switzerland.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To examine whether treatment with epigallocatechin gallate (EGCG) influences progression of brain atrophy, reduces clinical and further radiologic disease activity markers, and is safe in patients with progressive multiple sclerosis (PMS).

Methods: We enrolled 61 patients with primary or secondary PMS in a randomized double-blind, parallel-group, phase II trial on oral EGCG (up to 1,200 mg daily) or placebo for 36 months with an optional open-label EGCG treatment extension (OE) of 12-month duration. The primary end point was the rate of brain atrophy, quantified as brain parenchymal fraction (BPF). The secondary end points were radiologic and clinical disease parameters and safety assessments.

Results: In our cohort, 30 patients were randomized to EGCG treatment and 31 to placebo. Thirty-eight patients (19 from each group) completed the study. The primary endpoint was not met, as in 36 months the rate of decrease in BPF was 0.0092 ± 0.0152 in the treatment group and -0.0078 ± 0.0159 in placebo-treated patients. None of the secondary MRI and clinical end points revealed group differences. Adverse events of EGCG were mostly mild and occurred with a similar incidence in the placebo group. One patient in the EGCG group had to stop treatment due to elevated aminotransferases (>3.5 times above normal limit).

Conclusions: In a phase II trial including patients with multiple sclerosis (MS) with progressive disease course, we were unable to demonstrate a treatment effect of EGCG on the primary and secondary radiologic and clinical disease parameters while confirming on overall beneficial safety profile.

Clinicaltrialgov Identifier: NCT00799890.

Classification Of Evidence: This phase II trial provides Class II evidence that for patients with PMS, EGCG was safe, well tolerated, and did not significantly reduce the rate of brain atrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954462PMC
http://dx.doi.org/10.1212/NXI.0000000000000964DOI Listing

Publication Analysis

Top Keywords

brain atrophy
12
phase trial
12
epigallocatechin gallate
8
egcg
8
multiple sclerosis
8
primary secondary
8
egcg treatment
8
rate brain
8
radiologic clinical
8
clinical disease
8

Similar Publications

MRI Assessment of Radiation-Induced Delayed-Onset Microstructural Gray Matter Changes in Nasopharyngeal Carcinoma Patients.

J Magn Reson Imaging

September 2025

School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.

Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.

Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).

Study Type: Prospective, longitudinal.

View Article and Find Full Text PDF

Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.

View Article and Find Full Text PDF

Cortical Thinning and Microstructural Integrity Disruption in White Matter Hyperintensities.

Brain Res Bull

September 2025

Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, 230601, He Fei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, 230032, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230032, Hefei,

Background: The relationships between white matter microstructure, cortical atrophy, and cognitive function in cerebral small vessel disease (CSVD)-related white matter hyperintensities (WMHs) patients are unclear.

Methods: 71 right-handed WMHs patients (mild, n=23; moderate, n=27; severe, n=21) and 35 healthy controls were included. Tract-based spatial statistics (TBSS) assessed microstructure via fractional anisotropy (FA) and mean diffusivity (MD).

View Article and Find Full Text PDF

Background And Objectives: While reductions in optical coherence tomography (OCT) pRNFL and ganglion cell-inner plexiform layer thicknesses have been shown to be associated with brain atrophy in adult-onset MS (AOMS) cohorts, the relationship between OCT and brain MRI measures is less established in pediatric-onset MS (POMS). Our aim was to examine the associations of OCT measures with volumetric MRI in a cohort of patients with POMS to determine whether OCT measures reflect CNS neurodegeneration in this patient population, as is seen in AOMS cohorts.

Methods: This was a cross-sectional study with retrospective ascertainment of patients with POMS evaluated at a single center with expertise in POMS and neuro-ophthalmology.

View Article and Find Full Text PDF

Compared with more typical late-onset Alzheimer's disease (AD), the mechanisms of young-onset AD (YOAD; age of symptom onset <65 years) remain less understood. Using resting-state functional MRI data and dynamic causal modeling techniques, Sacu et al. demonstrate that individuals with YOAD (amnestic AD or posterior cortical atrophy) exhibit alterations in effective (i.

View Article and Find Full Text PDF