98%
921
2 minutes
20
Metallic implants are widely used in diverse clinical applications to aid in recovery from lesions or to replace native hard tissues. However, the lack of integration of metallic surfaces with soft tissue interfaces causes the occurrence of biomaterial-associated infections, which can trigger a complicated inflammatory response and, ultimately, implant failure. Here, a multifunctional implant surface showing nanoscale anisotropy, based on the controlled deposition of cellulose nanocrystals (CNC), and biological activity derived from platelet lysate (PL) biomolecules sequestered and presented on CNC surface, is proposed. The anisotropic radial nanopatterns are produced on polished titanium surfaces by spin-coating CNC at high speed. Furthermore, CNC surface chemistry allows to further sequester and form a coating of bioactive molecules derived from PL. The surface anisotropy provided by CNC guides fibroblasts growth and alignment up to 14 days of culture. Moreover, PL-derived biomolecules polarize macrophages toward the M2-like anti-inflammatory phenotype. These results suggest that the developed multifunctional surfaces can promote soft tissue integration to metallic implants and, at the same time, prevent bacterial invasion, tissue inflammation, and failure of biomedical metallic implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202001985 | DOI Listing |
J Am Acad Orthop Surg
September 2025
From the Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY (Neitzke, O'Donnell, Buchalter, Chandi, Westrich, and Gausden), the Department of Orthopedic Surgery, University of Wisconsin-Madison, Madison, WI (O'Donnell), and Somers Orthopaedic Surgery & Sports Medicine Group
Introduction: Developmental dysplasia of the hip (DDH) poses challenges for component positioning during total hip arthroplasty (THA) secondary to abnormal bone morphology, soft-tissue contractures, and hip center migration. The objective of this study was to evaluate the radiographic and clinical outcomes of THA for DDH performed with robotic assistance versus manual (M) technique.
Methods: A retrospective review identified 115 patients with Crowe II to IV dysplasia undergoing primary THA at a single institution from 2016 to 2022.
Electroporation is a promising technology utilizing electrical pulses for macromolecule delivery and soft-tissue ablation, with applications that include next-generation prophylactics and the treatment of genetic diseases such as cancer. This study demonstrates a high-throughput capable 3D tissue culture model for quantification of the reversible and irreversible electroporation thresholds for a given electroporation protocol. By using a non-uniform electric field and analyzing the spatial distribution of transfected cells, both reversible and irreversible thresholds can be identified within a single sample, increasing the efficiency at which electroporation protocols can be characterized, especially for in vivo translation.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Division of Plastic Surgery, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Facial feminization surgery (FFS) reshapes masculine facial attributes to align with feminine norms, yet normative anthropometric data for Asian populations remain sparse. We therefore quantified sex-related 3-dimensional (3D) facial metrics in healthy Asian adults to delineate dimorphic benchmarks for surgical planning. We prospectively recruited 40 healthy Asian adults (20 males, 20 females; age 18 to 45 years, mean 28.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.
View Article and Find Full Text PDF