Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The activity of midbrain dopamine neurons is strongly regulated by fast synaptic inhibitory γ-Aminobutyric acid (GABA)ergic inputs. There is growing evidence in other brain regions that low concentrations of ambient GABA can persistently activate certain subtypes of GABA receptor to generate a tonic current. However, evidence for a tonic GABAergic current in midbrain dopamine neurons is limited. To address this, we conducted whole-cell recordings from ventral tegmental area (VTA) dopamine neurons in brain slices from mice. We found that application of GABA receptor antagonists decreased the holding current, indicating the presence of a tonic GABAergic input. Global increases in GABA release, induced by either a nitric oxide donor or inhibition of GABA uptake, further increased this tonic current. Importantly, prolonged inhibition of the firing activity of local GABAergic neurons abolished the tonic current. A combination of pharmacology and immunohistochemistry experiments suggested that, unlike common examples of tonic inhibition, this current may be mediated by a relatively unusual combination of α4βƐ subunits. Lastly, we found that the tonic current reduced excitability in dopamine neurons suggesting a subtractive effect on firing activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651010PMC
http://dx.doi.org/10.1111/ejn.15133DOI Listing

Publication Analysis

Top Keywords

dopamine neurons
20
tonic current
16
tonic gabaergic
12
tonic
8
inhibition gaba
8
ventral tegmental
8
tegmental area
8
midbrain dopamine
8
gaba receptor
8
firing activity
8

Similar Publications

Introduction: Parkinson's disease (PD) is a neurodegenerative disorder lacking therapies to replace lost dopaminergic neurons. Neural stem cell (NSC) transplantation faces survival and differentiation challenges. This study investigated feasibility and efficacy of paeoniflorin (PF) combined with NSC transplantation for PD treatment.

View Article and Find Full Text PDF

Dopaminergic neurons in the dorsal raphe nucleus may modulate social dominance in mice.

Zool Res

September 2025

Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science, Nanyang Normal University, Nanyang, Henan 473061, China.

Social hierarchies are central to the organizational structure of group-living species, shaping individual physiology, behavior, and social interactions. Dopaminergic (DA) systems, particularly within the ventral tegmental area (VTA) and dorsal raphe nucleus (DR), have been linked to motivation and competitive behaviors, yet their region-specific contributions to social dominance remain insufficiently defined. This study investigated the role of VTA and DR DA neurons in regulating social dominance in sexually naïve male C57BL/6J mice.

View Article and Find Full Text PDF

Nr4a2 (Nurr1) is well known to be vital for midbrain dopaminergic neurons. Recent single-cell RNA analyses reveal that Nr4a2 is expressed in lateral cerebral regions, within neurons named L4/L5/L6 IT Car3. These neurons have attracted intense attention for the molecular mechanisms underlying their development and functions.

View Article and Find Full Text PDF

Animal models of the pathology of Parkinson's disease (PD) have provided most of the treatments to date, but the disease is restricted to human patients. In vitro models using human pluripotent stem cells (hPSCs)-derived neural organoids have provided improved access to study PD etiology. This study established a method to generate human striatal-midbrain assembloids (hSMAs) from hPSCs for modeling alpha-synuclein (α-syn) propagation and recapitulating basal ganglia circuits, including nigrostriatal and striatonigral pathways.

View Article and Find Full Text PDF

Objective: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized pathologically by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a significant decline in striatal dopamine levels. This study aims to systematically analyze alterations in striatal metabolites across different stages of PD to identify potential biomarkers, elucidate pathological mechanisms, and explore therapeutic targets.

Methods: A total of 72 mice were divided into six groups, including one control group and five PD model groups (W1-W5, representing distinct stages based on the duration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid induction).

View Article and Find Full Text PDF