98%
921
2 minutes
20
The release of neurotransmitters following the fusion of synaptic vesicles and the presynaptic membrane is an important process in the transmission of neuronal information. Syntaxin-binding protein 1 (Munc18-1) is a synaptic fusion protein binding protein, which mainly regulates synaptic vesicle fusion and neurotransmitter release by interacting with soluble N-ethylmaleimide sensitive factor attachment protein receptor. In addition to affecting neurotransmitter transmission, Munc18-1 is also involved in regulating neurosynaptic plasticity, neurodevelopment and neuroendocrine cell release functions (including thyroxine and insulin release). A number of previous studies have demonstrated that Munc18-1 has diverse and vital biological functions, and that its abnormal expression serves an important role in the pathogenesis of a variety of neurological diseases, including epileptic encephalopathy, schizophrenia, autism, Parkinson's disease, Alzheimer's disease, multiple sclerosis, Duchenne's muscular dystrophy and neuronal ceroid lipofuscinosis. The present review summarizes the function of Munc18-1 and its possible relationship to the pathogenesis of various neurological diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821349 | PMC |
http://dx.doi.org/10.3892/mmr.2021.11837 | DOI Listing |
Biom J
October 2025
Novella Clinical Full Service, IQVIA, Melbourne, Australia.
Phase I dose escalation trials in oncology generally aim to find the maximum tolerated dose. However, with the advent of molecular-targeted therapies and antibody drug conjugates, dose-limiting toxicities are less frequently observed, giving rise to the concept of optimal biological dose (OBD), which considers both efficacy and toxicity. The estimand framework presented in the addendum of the ICH E9(R1) guidelines strengthens the dialogue between different stakeholders by bringing in greater clarity in the clinical trial objectives and by providing alignment between the targeted estimand under consideration and the statistical analysis methods.
View Article and Find Full Text PDFPlant Dis
September 2025
Shenyang Agricultural University, College of Plant Protection, Nematology Institute of Northern China, Shenyang, China;
Root-knot nematodes (Meloidogyne spp.) cause catastrophic yield losses in global agriculture. This study identified itaconic acid (IA), through comparative metabolomic analysis (the study of small molecules in biological systems), as a key virulence-related metabolite produced by the fungus Trichoderma citrinoviride Snef1910.
View Article and Find Full Text PDFGenome Biol
September 2025
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.
View Article and Find Full Text PDFGenome Biol
September 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.
Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.
Clin Genet
September 2025
Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.
View Article and Find Full Text PDF