98%
921
2 minutes
20
A simple design of a broadband multifunctional polarization converter using an anisotropic metasurface for X-band application is proposed. The proposed polarization converter consists of a periodic array of the two-corner-cut square patch resonators based on the FR-4 substrate that achieves both cross-polarization and linear-to-circular polarization conversions. The simulated results show that the polarization converter displays the linear cross-polarization conversion in the frequency range from 8 to 12 GHz with the polarization conversion efficiency above 90%. The efficiency is kept higher than 80% with wide incident angle up to 45°. Moreover, the proposed design achieves the linear-to-circular polarization conversion at two frequency bands of 7.42-7.6 GHz and 13-13.56 GHz. A prototype of the proposed polarization converter is fabricated and measured, showing a good agreement between the measured and simulated results. The proposed polarization converter exhibits excellent performances such as simple structure, multifunctional property, and large cost-efficient bandwidth and wide incident angle insensitivity in the linear cross polarization conversion, which can be useful for X-band applications. Furthermore, this structure can be extended to design broadband polarization converters in other frequency bands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820250 | PMC |
http://dx.doi.org/10.1038/s41598-021-81586-w | DOI Listing |
ACS Nano
September 2025
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China.
Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
Although cold atmospheric plasma is a promising therapeutic technique for tumor immunotherapy via reactive oxygen and nitrogen species (RONS), the challenges associated with the generation and delivery of these RONS hamper clinical adoption. Herein, a dual-mode hybrid discharge plasma-activated sodium alginate hydrosols (PAH) is proposed to enhance the antitumor immune response. Gaseous highly reactive RONS are generated by dual-mode hybrid plasma produced by mixed O and NO modes, which are converted into aqueous RONS in PAH via gas-liquid reactions between plasma and hydrosols.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
August 2025
Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Dongguan No.7 People's Hospital (Dongguan Mental Health Center), Dongguan, China; Neuroscience Section, BGI Life Science Research Institute, Hangzhou, China. Elect
Background: Sleep disorders show comorbidity with depression and Alzheimer's disease (AD), especially in ageing. However, the neuroimmunological role of sleep deprivation (SD) as possible inducer to these conditions remains unknown. Omega-3 fatty acids (n-3 FAs) can improve depression and AD through anti-inflammation, up-regulating neurotrophins and normalizing neurotransmitters, while their therapeutic effects on sleep deprivation (SD)-induced changes in different ages requires investigation.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
Chemodynamic therapy (CDT), which utilizes endogenous hydrogen peroxide (HO) to generate hydroxyl radicals (OH) via Fenton-like reactions, faces critical limitations in clinical translation, including insufficient intratumoral HO levels and glutathione (GSH)-mediated ROS scavenging. To address these challenges, we developed a tumor microenvironment (TME)-responsive nanoreactor, CA@ZIF-8/MnO (CZM), integrating dual functionalities of GSH-depleting and HO self-supplying for cascade-amplified CDT. The ZIF-8 framework serves as a biodegradable carrier for chlorogenic acid (CA), which converts superoxide (O) into HO, while the MnO shell depletes GSH to yield Mn, a Fenton-like catalyst.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, China. Electronic address:
The development of integrated systems for simultaneous chemical threat detection and decontamination is hindered by inherent sensitivity-efficiency trade-offs. We address this challenge through interfacial engineering of a Janus membrane combining D-A molecule functionalized MOFs with PDMS. A gas-liquid interfacial self-assembly strategy enables the creation of a microporous PDMS top layer for vapor preconcentration and vertically aligned MOF nanochannels (2.
View Article and Find Full Text PDF