Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: It has been suggested that transcranial alternating current stimulation (tACS) at both alpha and beta frequencies promotes motor function as well as motor learning. However, limited information exists on the aftereffects of tACS on motor learning and neurophysiological profiles such as entrainment and neural plasticity in parallel. Therefore, in the present study, we examined the effect of tACS on motor learning and neurophysiological profiles using an off-line tACS condition.

Methods: Thirty-three healthy participants were randomly assigned to 10 Hz, 20 Hz, or the sham group. Participants performed visuomotor learning tasks consisting of a baseline task (preadaptation task) and training task (adaptation task) to reach a target with a lever-type controller. Electroencephalography was recorded from eight locations during the learning tasks. tACS was performed between the preadaptation task and adaptation task over the left primary motor cortex for 10 min at 1 mA.

Results: As a result, 10 Hz tACS was shown to be effective for initial angular error correction in the visuomotor learning tasks. However, there were no significant differences in neural oscillatory activities among the three groups.

Conclusion: These results suggest that initial motor learning can be facilitated even when 10 Hz tACS is applied under off-line conditions. However, neurophysiological aftereffects were recently demonstrated to be induced by tACS at individual alpha frequencies rather than fixed alpha tACS, which suggests that the neurophysiological aftereffects by fixed frequency stimulation in the present study may have been insufficient to generate changes in oscillatory neural activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507357PMC
http://dx.doi.org/10.1002/brb3.1754DOI Listing

Publication Analysis

Top Keywords

motor learning
16
visuomotor learning
12
learning tasks
12
tacs
9
transcranial alternating
8
alternating current
8
current stimulation
8
learning
8
tacs motor
8
learning neurophysiological
8

Similar Publications

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF

Cholinergic neurons in the basal forebrain cholinergic nuclei (BFCN) and neostriatum (CPu) play key roles in learning, attention, and motor control. The loss of cholinergic neurons causes major neurodegenerative diseases such as Alzheimer's disease. This study aimed to elucidate the molecular diversity of choline acetyltransferase immunoreactive (ChAT-ir) neurons in these brain regions.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Limiting cognitive resources negatively impacts motor learning, but its cognitive mechanism is still unclear. Previous studies failed to differentiate its effect on explicit (or cognitive) and implicit (or procedural) aspects of motor learning. Here, we designed a dual-task paradigm requiring participants to simultaneously perform a visual working memory task and a visuomotor rotation adaptation task to investigate how cognitive load differentially impacted explicit and implicit motor learning.

View Article and Find Full Text PDF

Brain activation for language and its relationship to cognitive and linguistic measures.

Cereb Cortex

August 2025

Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.

Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.

View Article and Find Full Text PDF