Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cerebral amyloid angiopathy (CAA), limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) and Lewy bodies occur in the absence of clinical and neuropathological Alzheimer's disease, but their prevalence and severity dramatically increase in Alzheimer's disease. To investigate how plaques, tangles, age and apolipoprotein E ε4 (APOE ε4) interact with co-pathologies in Alzheimer's disease, we analysed 522 participants ≥50 years of age with and without dementia from the Center for Neurodegenerative Disease Research (CNDR) autopsy program and 1340 participants in the National Alzheimer's Coordinating Center (NACC) database. Consensus criteria were applied for Alzheimer's disease using amyloid phase and Braak stage. Co-pathology was staged for CAA (neocortical, allocortical, and subcortical), LATE-NC (amygdala, hippocampal, and cortical), and Lewy bodies (brainstem, limbic, neocortical, and amygdala predominant). APOE genotype was determined for all CNDR participants. Ordinal logistic regression was performed to quantify the effect of independent variables on the odds of having a higher stage after checking the proportional odds assumption. We found that without dementia, increasing age associated with all pathologies including CAA (odds ratio 1.63, 95% confidence interval 1.38-1.94, P < 0.01), LATE-NC (1.48, 1.16-1.88, P < 0.01), and Lewy bodies (1.45, 1.15-1.83, P < 0.01), but APOE ε4 only associated with CAA (4.80, 2.16-10.68, P < 0.01). With dementia, increasing age associated with LATE-NC (1.30, 1.15-1.46, P < 0.01), while Lewy bodies associated with younger ages (0.90, 0.81-1.00, P = 0.04), and APOE ε4 only associated with CAA (2.36, 1.52-3.65, P < 0.01). A longer disease course only associated with LATE-NC (1.06, 1.01-1.11, P = 0.01). Dementia in the NACC cohort associated with the second and third stages of CAA (2.23, 1.50-3.30, P < 0.01), LATE-NC (5.24, 3.11-8.83, P < 0.01), and Lewy bodies (2.41, 1.51-3.84, P < 0.01). Pathologically, increased Braak stage associated with CAA (5.07, 2.77-9.28, P < 0.01), LATE-NC (5.54, 2.33-13.15, P < 0.01), and Lewy bodies (4.76, 2.07-10.95, P < 0.01). Increased amyloid phase associated with CAA (2.27, 1.07-4.80, P = 0.03) and Lewy bodies (6.09, 1.66-22.33, P = 0.01). In summary, we describe widespread distributions of CAA, LATE-NC and Lewy bodies that progressively accumulate alongside plaques and tangles in Alzheimer's disease dementia. CAA interacted with plaques and tangles especially in APOE ε4 positive individuals; LATE-NC associated with tangles later in the disease course; most Lewy bodies associated with moderate to severe plaques and tangles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041349PMC
http://dx.doi.org/10.1093/brain/awaa438DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
20
co-pathologies alzheimer's
8
lewy bodies
8
alzheimer's
6
disease
6
development convergence
4
convergence co-pathologies
4
disease cerebral
4
cerebral amyloid
4
amyloid angiopathy
4

Similar Publications

Estimated Glucose Disposal Rate and Risk of Stroke and Dementia in Nondiabetics: A UK Biobank Prospective Cohort Study.

Arterioscler Thromb Vasc Biol

September 2025

Institute of Cardiovascular Diseases and Department of Cardiology, Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu (K.L., H.M., W.J

Background: The estimated glucose disposal rate (eGDR) is a validated surrogate marker of insulin resistance. However, its association with stroke and dementia in nondiabetic populations remains insufficiently investigated.

Methods: This prospective cohort study included nondiabetic participants from the UK Biobank.

View Article and Find Full Text PDF

Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.

View Article and Find Full Text PDF

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Case Study 10: A 51-Year-Old Man With Psychosis, Decline in Self-Care, and Cognitive Deterioration.

J Neuropsychiatry Clin Neurosci

September 2025

Departments of Psychiatry and Neurology, Center for Brain/Mind Medicine, and Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston.

View Article and Find Full Text PDF

Neuroinflammation has emerged as a central and dynamic component of the pathophysiology underlying a wide range of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Far from being a secondary consequence of neuronal damage, inflammatory processes (mediated by microglia, astrocytes, peripheral immune cells, and associated molecular mediators) actively shape disease onset, progression, and symptomatology. This review synthesizes current knowledge on the cellular and molecular mechanisms that govern neuroinflammatory responses, emphasizing both shared and disease-specific pathways.

View Article and Find Full Text PDF