Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One major determinant of systemic immunity during homeostasis and in certain complex multifactorial diseases (e.g. cancer and autoimmune conditions), is the gut microbiota. These commensals can shape systemic immune responses via translocation of metabolites, microbial cell wall components, and viable microbes. In the last few years, bacterial translocation has revealed itself as playing a key, and potentially causal role in mediating immunomodulatory processes in nongastrointestinal diseases. Moreover, recent observations regarding the presence of complex microbial communities and viable bacteria within gut-distal tissues during homeostasis challenge the current paradigm that healthy mammals are entirely sterile at nonmucosal sites. This review discusses our current understanding of how the gut microbiota orchestrates systemic immunity during noninfectious extraintestinal diseases and homeostasis, focusing on the translocation of viable bacteria to gut-distal sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110348PMC
http://dx.doi.org/10.1016/j.it.2020.12.005DOI Listing

Publication Analysis

Top Keywords

systemic immunity
8
gut microbiota
8
viable bacteria
8
bacteria gut-distal
8
systemic
4
systemic immunoregulatory
4
immunoregulatory consequences
4
consequences gut
4
gut commensal
4
translocation
4

Similar Publications

Background: Inflammation and hyperuricemia are closely associated with chronic kidney disease (CKD). The systemic inflammation response index (SIRI), systemic immune-inflammation index (SII), monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) are emerging as novel biomarkers. While, the synergistic effects of these biomarkers with hyperuricemia on CKD remain unclear.

View Article and Find Full Text PDF

Innovative engineering approaches to model host-microbiome interactions in vitro.

Adv Drug Deliv Rev

September 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States. Electronic address:

The human microbiome plays a critical role in health and disease. Disruptions in microbiota composition or function have been implicated not only as markers but also as drivers of diverse pathologies, creating opportunities for targeted microbiome interventions. Advancing these therapies requires experimental models that can unravel the complex, bidirectional interactions between human tissue and microbial communities.

View Article and Find Full Text PDF

Dual-sensitive gelatin-coated chitosan microparticles for targeted semaglutide pulmonary delivery: a novel approach to enhancing anti-inflammatory and anti-fibrotic effects.

Int Immunopharmacol

September 2025

Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt. Electronic address:

This study introduces a novel dual-sensitive drug delivery system, gelatin-coated chitosan microparticles (GL-ChMPs), designed to enhance the lung targeting and therapeutic efficacy of semaglutide (SEM). GL-ChMPs were designed to respond to the acidic environment and metalloproteinases, conditions that are typical in pulmonary fibrosis. SEM-GL-ChMPs exhibited superior lung targeting and prolonged retention while minimizing systemic distribution.

View Article and Find Full Text PDF

The hidden connection: systemic immune-inflammation index and its role in asthma.

Clinics (Sao Paulo)

September 2025

School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, China. Electronic address:

Background: This study explores potential associations between asthma and the Systemic Immune-Inflammation Index (SII).

Methods: The study primarily focuses on adults with complete data on SII and asthma from the National Health and Nutrition Examination Survey database (2015-2020). SII is calculated using the formula: platelet count × neutrophil count / lymphocyte count.

View Article and Find Full Text PDF

The survival analysis of stage III and IV inoperable lung large cell neuroendocrine carcinoma and the role of LIPI in immunological stratification.

Lung Cancer

August 2025

The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou, China; Guangzhou Institute of Respiratory Health, Guangzhou, C

Background: Large cell neuroendocrine carcinoma (LCNEC) represents a rare and unique type of lung tumor with an unfavorable prognosis. It is essential to summarize the treatment modalities and prognosis for inoperable stage III and IV LCNEC, explore the role of frontline immunotherapy, and examine the stratification role of the Lung Immune Prognostic Index (LIPI) and its relationship with the tumor microenvironment (TME).

Methods: This study retrospectively analyzed 160 patients with inoperable lung LCNEC (L-LCNEC) admitted to three hospitals from December 2012 to November 2023.

View Article and Find Full Text PDF