Platelet CXCL4 mediates neutrophil extracellular traps formation in ANCA-associated vasculitis.

Sci Rep

Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

Published: January 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neutrophils form neutrophil extracellular traps (NETs), which are involved in the pathogenesis of ANCA-associated vasculitis (AAV). Recent reports suggest that platelets stimulated via toll-like receptor (TLR) pathways can induce NETs formation. However, the mechanism underlying the involvement of platelets in NETs formation in AAV is unknown. We investigated the role of platelets in the pathogenesis of AAV. Platelets from AAV patients and healthy controls (HCs) were co-cultured with peripheral neutrophils, and NETs formation was visualized and quantified. The expression levels of TLRs on platelets were examined by flow cytometry. Platelets were treated with a TLR agonist, platelet-derived humoral factor, CXCL4 (platelet factor 4: PF4), and/or anti-CXCL4 antibody to investigate the effects of TLR-CXCL4 signaling on NETs formation. Platelets from AAV significantly upregulated NETs formation in vitro. Flow cytometric analysis revealed that the proportion of TLR9 positive platelets was significantly higher in AAV than HCs. CXCL4 released from TLR9 agonist-stimulated platelets was significantly enhanced in AAV, which subsequently increased NETs formation. Further, neutralizing anti-CXCL4 antibody significantly inhibited NETs formation enhanced by platelets from AAV. TLR9 signaling and CXCL4 release underlie the key role that platelets play in NETs formation in the pathogenesis of AAV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794527PMC
http://dx.doi.org/10.1038/s41598-020-80685-4DOI Listing

Publication Analysis

Top Keywords

nets formation
32
platelets aav
12
platelets
11
formation
9
nets
9
aav
9
neutrophil extracellular
8
extracellular traps
8
anca-associated vasculitis
8
role platelets
8

Similar Publications

Kaempferol as a multifaceted immunomodulator: implications for inflammation, autoimmunity, and cancer.

Front Immunol

September 2025

Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.

Kaempferol (KMF) is a dietary flavonoid exhibiting profound immunomodulatory effects across multiple immune cell populations. This review synthesizes current insights into how KMF regulates diverse immune cell populations and its therapeutic potential in inflammatory and immune-related disorders. KMF exhibits multifaceted effects on T cells.

View Article and Find Full Text PDF

Immunomodulation and Thrombolytic Approaches in the Management of Deep Vein Thrombosis and Pulmonary Embolism.

Cardiol Cardiovasc Med

August 2025

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA.

Deep vein thrombosis (DVT) and pulmonary embolism (PE) are key initiating events in the development of venous thromboembolism (VTE), a condition associated with significant morbidity, mortality, and long-term complications. While traditional therapies have focused on anticoagulation and thrombolysis, current evidence describes the pivotal role of immune pathways in the pathogenesis and progression of thrombosis. This review explores the multifaceted mechanisms underlying DVT and PE, emphasizing the contribution of inflammation, leukocyte activation, and immuno-thrombosis to thrombus formation and embolization.

View Article and Find Full Text PDF

Astragaloside IV regulates the IRF7/NLRP3 axis to inhibit neutrophil extracellular trap formation and alleviate coxsackievirus B3-induced myocarditis.

Biochem Biophys Res Commun

August 2025

Intensive Care Unit, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China. Electronic address:

Background: Coxsackievirus B3 (CVB3) infection is a common cause of myocarditis, and the resulting inflammatory response and cellular damage can lead to severe cardiac dysfunction. Astragaloside IV (AS-IV), a natural compound with anti-inflammatory and antiviral properties, has shown potential therapeutic value in various inflammatory and immune-related diseases. Our study aims to explore the potential effects and underlying mechanisms of AS-IV in CVB3-induced viral myocarditis (VMC).

View Article and Find Full Text PDF

Biomechanic regulation of neutrophil extracellular traps in the cardiovascular system.

Trends Immunol

September 2025

Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:

Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.

View Article and Find Full Text PDF

Residual Malaria Transmission in Western Burkina Faso: Vector Behavior, Insecticide Resistance, and the Efficacy Limits of Next-Generation LLINs.

Acta Trop

September 2025

Université Nazi BONI (UNB), Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Bobo-Dioulasso, Burkina Faso; Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso; Institut National Santé Publique, Centre MURAZ, Bobo-Di

An entomological surveillance was carried out in two districts of western Burkina Faso to assess the impact of mass-distributed next-generation long-lasting insecticidal nets (LLINs) (Piperonyl Butoxide (PBO) LLINs and Interceptor® G2) on Anopheles gambiae s.l. populations, focusing on insecticide resistance trends and residual malaria transmission patterns, along with their environmental and operational determinants.

View Article and Find Full Text PDF