98%
921
2 minutes
20
Organometal halide perovskites (OMHPs) have emerged as advisible materials for application in optoelectronic devices over the past decade. However, a variety of complex slow responses in OMHPs under an external electric field have been observed, and the mechanisms for these responses remain a topic of intense debate. In this work, with an external voltage applied to the CHNHPbI crystal, reversible photoluminescence (PL) enhancement and quenching behaviors respectively near the anode and the cathode were observed under wide-field fluorescence microscopy. Further experiments attribute the reversible PL enhancing responses to the electron injection effect increasing the radiative recombination, while PL quenching was attributed to be due to the electron extraction effect increasing the nonradiative recombination. The control of PL by external applied voltage indicates brilliant carrier mobility in the CHNHPbI crystal and also reminds us to focus on the effect of hole/electron injection on the materials which may limit the performance of perovskite-based optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c03322 | DOI Listing |
Light Sci Appl
September 2025
State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.
As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.
View Article and Find Full Text PDFCell Rep Med
August 2025
Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Mole
Rapid identification and accurate diagnosis are critical for individuals with acute leukemia (AL). Here, we propose a combined deep learning and surface-enhanced Raman scattering (DL-SERS) classification strategy to achieve rapid and sensitive identification of AL with various subtypes and genetic abnormalities. More than 390 of cerebrospinal fluid (CSF) samples are collected as targets, encompassing healthy control, AL patients, and individuals with other diseases.
View Article and Find Full Text PDFDiscov Nano
September 2025
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China.
A cost-effective and large-scale method for synthesizing ZnCoO nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCoO nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCoO are examined using density functional theory, revealing that treatment with NaBH reduces the band gap of ZnCoO while increasing the DOS near the Fermi level compared to pristine ZnCoO.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Achieving UVA/B-selective, skin-inspired nociceptors with perception and blockade functions at the single-unit device level remains challenging. This is because the device necessitates distinct components for every performance metric, thereby leading to complex preparation processes and restricted performance, as well as the absence of deep UV (UVB and below)-selective semiconductors. Here, to address this, we develop a structure-simplification skin-inspired nociceptor using a reverse type-II CuAgSbI/MoS heterostructure.
View Article and Find Full Text PDF