A priming study on naming real versus pictures of tools.

Exp Brain Res

Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is a growing body of literature demonstrating the relationship between the activation of sensorimotor processes in object recognition. It is unclear, however, if these processes are influenced by the differences in how real (3D) tools and two-dimensional (2D) images of tools are processed by the brain. Here, we examined if these differences could influence the naming of tools. Participants were presented with a prime stimulus that was either a picture of a tool, or a real tool, followed by a target stimulus that was always a real tool. They were then required to name each tool as they appeared. The functional use action required by the target tool was either the same (i.e., squeegee-paint roller) or different (i.e. knife-whisk) to the prime. We found that the format in which the prime tool was presented (i.e., a picture or real tool) had no influence on the participants' response times to naming the target tool. Furthermore, participants were faster at naming target tools relative to prime tools when the exact same tool was presented as both the prime and target. There was no difference in response times to naming the target tool relative to the prime when they were different tools, regardless of whether the tools' functional actions were the same or different. We also found more errors in naming target tools relative to the primes when different tools had a different functional action compared to when the same tool was presented as both the prime and the target. Taken together, our results highlight that the functional actions associated with tools do not facilitate or interfere with the recognition of tools for the purposes of naming. The theoretical implications of these results are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-020-06015-2DOI Listing

Publication Analysis

Top Keywords

naming target
16
presented prime
12
real tool
12
target tool
12
tool presented
12
tools
11
tool
11
target
8
functional action
8
response times
8

Similar Publications

Identification and antiviral mechanism of a novel chicken-derived interferon-related antiviral protein targeting PRDX1.

PLoS Pathog

September 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.

In this study, we identified a new chicken-specific protein, named chicken interferon-related antiviral protein (chIRAP) after sequence analysis and comparison, which inhibited the proliferation of various viruses including influenza A virus (IAV) and Newcastle Disease Virus (NDV) in vitro, and chicken embryos with high expression of chIRAP reduced IAV infection. Mass spectrometry analysis of chIRAP interacting proteins and screening of interacting proteins affecting the function of chIRAP revealed that the deletion of endogenous chicken peroxiredoxin 1 (chPRDX1) significantly reduced the antiviral effect of chIRAP. In order to clarify the functional site of chPRDX1 affecting the antiviral effect of chIRAP, we constructed the point mutants of chPRDX1 based on the results of molecular docking (D79A, T90A, K93A, Q94A, R110A, R123A), and screened the sites affecting the antiviral effects of chIRAP by knockdown of endogenous chPRDX1 combined with the overexpression mutant strategy, the results showed that the mutations in the sites affected the antiviral effects of chIRAP to different degrees, with D79A being the most significant, and the D79A mutation of chPRDX1 reduces the ability of chPRDX1 to regulate reactive oxygen species (ROS).

View Article and Find Full Text PDF

Background: Ectopic ACTH syndrome (EAS) is caused by non-pituitary neuroendocrine tumor (NET) which produces adrenocorticotropic hormone (ACTH).

Objective: To identify survival predictors and to analyze long-term outcomes in patients with EAS.

Methods: Medical records of patients with verified EAS between 1990 and 2024 were analyzed to obtain the initial clinical and biochemical data along with subsequent interventions and survival outcomes.

View Article and Find Full Text PDF

Background: Breast cancer (BRCA) is the most prevalent cancer in women, with triple-negative breast cancer (TNBC) accounting for 15-20% of cases. TNBC is associated with higher rates of metastasis, recurrence, and poorer prognosis, underscoring the urgent need for new diagnostic and therapeutic strategies.

Methods: In this study, multiple public online platform, including UCSC Genome, UALCAN, Kaplan Meier plotter, DepMap and Single Cell Portal were used to detect the expression of EPHA2 in TNBC.

View Article and Find Full Text PDF

Self-phosphorylating DNAzyme DK1 enables programmable multi-analyte readout via PfAgo.

Biosens Bioelectron

September 2025

Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School

DNAzymes possessing kinase-like activities have long held theoretical promise, yet their practical implementation has remained significantly limited. Notably, DNAzyme kinase 1 (DK1), discovered over two decades ago, exhibits a unique self-phosphorylation capability upon encountering specific substrates like ATP, but its broad-based and programmable applications have not yet been fully realized. In this study, we innovatively couple DK1's autophosphorylation mechanism with the PfAgo to establish a novel programmable cascade sensing platform named RASTEN (Robust pfAgo-based Strategy for POC Testing Non-nucleic Acid and Nucleic Acid).

View Article and Find Full Text PDF

Ultrasound-Activated Piezoelectric Nanoparticles Targeting and Activating NK Cells for Tumor Immunotherapy.

Adv Mater

September 2025

Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Shandong University, Jinan, Shandong, 250012, China.

Natural killer (NK) cells can swiftly and efficiently kill tumor cells with low toxicity and show great potential as anticancer agents. However, the hostile tumor microenvironment (TME) reduces the number and functionality of NK cells, leading to tumor progression and the limited therapeutic effect of adoptively transferred NK cells, especially in solid tumors. Here, via mussel-inspired chemistry and targeted antibody modification strategies, functional piezoelectric nanoparticles are designed to target NK cells, named as αCD56-P@BT (for human) or αNK1.

View Article and Find Full Text PDF