Temperature Shift Between Vineyards Modulates Berry Phenology and Primary Metabolism in a Varietal Collection of Wine Grapevine.

Front Plant Sci

French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Global climate change and the expected increase in temperature are altering the relationship between geography and grapevine () varietal performance, and the implications of which are yet to be fully understood. We investigated berry phenology and biochemistry of 30 cultivars, 20 red and 10 white, across three seasons (2017-2019) in response to a consistent average temperature difference of 1.5°C during the growing season between two experimental sites. The experiments were conducted at Ramat Negev (RN) and Ramon (MR) vineyards, located in the Negev desert, Israel. A significant interaction between vineyard location, season, and variety affected phenology and berry indices. The warmer RN site was generally associated with an advanced phenological course for the white cultivars, which reached harvest up to 2 weeks earlier than at the MR site. The white cultivars also showed stronger correlation between non-consecutive phenological stages than did the red ones. In contrast, harvest time of red cultivars considerably varied according to seasons and sites. Warmer conditions extended fruit developmental phases, causing berry shriveling and cluster collapse in a few cultivars such as Pinot Noir, Ruby Cabernet, and Tempranillo. Analyses of organic acid content suggested differences between red and white cultivars in the content of malate, tartrate, and citrate in response to the temperature difference between sites. However, generally, cultivars at lower temperatures exhibited lower concentrations of pulp organic acids at véraison, but acid degradation until harvest was reduced, compared to the significant pace of acid decline at the warmer site. Sugars showed the greatest differences between sites in both white and red berries at véraison, but differences were seasonal dependent. At harvest, cultivars of both groups exhibited significant variation in hexose/sucrose ratio, and the averages of which varied from 1.6 to 2.9. Hexose/sucrose ratio was significantly higher among the red cultivars at the warmer RN, while this tendency was very slight among white cultivars. White cultivars seem to harbor a considerable degree of resilience due to a combination of earlier and shorter ripening phase, which avoids most of the summer heat. Taken together, our study demonstrates that the extensive genetic capacity of bears significant potential and plasticity to withstand the temperature increase associated with climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774500PMC
http://dx.doi.org/10.3389/fpls.2020.588739DOI Listing

Publication Analysis

Top Keywords

white cultivars
20
cultivars
11
berry phenology
8
climate change
8
red white
8
temperature difference
8
warmer site
8
red cultivars
8
hexose/sucrose ratio
8
white
7

Similar Publications

Identification of a carotenoid cleavage dioxygenase gene TeCCD4a regulating flower color and carotenoid content of marigold.

Gene

September 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Marigold (Tagetes erecta) serves as both an ornamental and economically significant species, owing to its diverse floral coloration and exceptionally high petal carotenoid content. Carotenoid cleavage dioxygenase (CCD), as the key enzymatic component, mediates the carotenoid degradation process. In this study, we cloned and functionally characterized a CCD4 gene to elucidate its regulatory function in petal color and carotenoid biosynthesis.

View Article and Find Full Text PDF

Introduction: This study examined the effects of pot size, soil type, fertilizer x dose interactions, and foliar fertilizer application on wheat growth under speed breeding conditions.

Methods: The study was conducted in 2020 in a semi-controlled greenhouse at Dicle University, Diyarbakır, Türkiye, with a 22-hour photoperiod, 22/17°C day/ night temperature, 70% humidity, and 316.15 µmol/m/s light intensity using a mix of white, red, yellow, and purple LED lamps.

View Article and Find Full Text PDF

Background: Caffeic acid, one of the important phenolic compounds in plants, plays a significant role in enhancing the defense mechanisms and adaptation of plants to environmental stresses, including drought. This study aimed to investigate the effect of drought stress on the expression of genes involved in the biosynthesis of caffeic acid, photosynthetic mechanisms, and antioxidant enzyme activity in three cultivars of beans. The experiment was conducted in a split-plot design within a randomized complete block design, with three irrigation levels (50, 75, and 100% of water requirement) as the main factor and three bean cultivars (red, white, and pinto) as the sub-factor, with three replications.

View Article and Find Full Text PDF

Japanese red or white common bean ( L.) cultivars, used to make sweetened boiled beans, are called "kintoki" beans. Kintoki beans are planted to precede winter wheat for crop rotation in Hokkaido, northern Japan.

View Article and Find Full Text PDF

Assessing the potential of seaweed extracts to improve vegetative, physiological and berry quality parameters in Vitis vinifera cv. Chardonnay under cool climatic conditions.

PLoS One

September 2025

Department of Microbial and Molecular Systems (M2S), CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Leuven, Belgium.

Seaweed extracts are promising plant biostimulants for viticulture, but their effects on white winegrape cultivars grown under cool climates remain fairly undocumented. Furthermore, information is limited on the biostimulant potential of some brown seaweed species like Ecklonia maxima. This study evaluated the impact of two commercial extracts (derived from Ascophyllum nodosum and Ecklonia maxima) on Vitis vinifera cv.

View Article and Find Full Text PDF