98%
921
2 minutes
20
In developing countries, people mainly depend on rice as their primary source of calories. However, the thiamine content of rice is below minimal requirements. Biofortification, via genetic engineering, is a cost-effective strategy to increase thiamine content in rice. We report on the optimization of a matrix-specific method, including extensive optimization of the sample preparation to ensure maximal sensitivity and stability. The LC-MS/MS method was fully validated for the simultaneous quantification of thiamine, its precursors 4-methyl-5-(2-hydroxyethyl) thiazole (HET) and 4-amino-2-methyl-5-hydroxymethylpyrimidine (HMP) and its diphosphate derivative (TDP) in both polished and unpolished rice. Bias was below 9% for all analytes and total imprecision (CV%) was within pre-set acceptance criteria (≤15%) for both QCs and real samples. Thiamine monophosphate (TMP), for which no labeled analogue was available at the time of analysis, was determined without internal standard. Although both accuracy and precision criteria were met (bias and CV < 12%), the determination of TMP was considered semi-quantitatively. Moreover, TMP was found to be only a minor thiamine form (<1% of total thiamine in all lines analyzed, both wild-type and genetically engineered), with measurable levels only present in unpolished rice. Finally, the validity and applicability of the procedure were demonstrated via its successful application on rice lines, genetically engineered to enhance thiamine content. Consequently, this method allows to evaluate the success of biofortification strategies in rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2020.121905 | DOI Listing |
Br J Cancer
September 2025
School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
Background: Activin A/Smad signaling plays an important role in promoting cancer stemness and chemoresistance in pancreatic ductal adenocarcinoma (PDAC), however the precise regulation on the termination of this pathway has not been fully understood.
Methods: LncRNA SLC7A11-AS1 interacting proteins were identified through RNA pull-down followed by LC-MS/MS. The protein interaction was analyzed by co-immunoprecipitation.
Analyst
September 2025
Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
: Postmenopausal conditions can lead to metabolic disorders such as obesity and steatosis. (PT), a prominent traditional Chinese medicine, exerts potential therapeutic effects against hepatic injury. Nevertheless, the extent to which PT ameliorates liver damage resulting from estrogen deficiency, along with the associated mechanisms, remains poorly understood.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
September 2025
Department of Pediatrics and Developmental Biology, Institute of Science Tokyo School of Medicine, Bunkyo-ku, Tokyo, 113-8510, Japan.
Context: Newborn screening (NBS) for 21-hydroxylase deficiency (21OHD) has historically shown high false positive (FP) rates, especially in low birth weight (LBW) infants. In 2022, we proposed a second-tier liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based algorithm to improve screening specificity; however, its real-world performance remains unassessed prospectively.
Objective: To prospectively evaluate our LC-MS/MS-based screening algorithm for 21OHD and develop a refined version addressing newly identified clinical limitations.
Alzheimers Dement
September 2025
Cell Biology Program, Sloan Kettering Institute, New York, New York, USA.
Introduction: Biomarkers are essential for monitoring the progression of frontotemporal dementia (FTD). Although dysregulated brain lipid metabolism, particularly sphingolipids enriched in the nervous system, is a key feature of neurodegeneration, plasma lipids remain underexplored as biomarkers compared to imaging and serum proteins.
Methods: We examined plasma lipidomes using liquid chromatography-tandem mass spectrometry (LC-MS/MS) from individuals carrying pathogenic variants linked to autosomal dominant FTD (GRN, C9orf72, MAPT) and non-carriers.
Food Res Int
November 2025
Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, China. Electronic address:
Pu-erh raw tea (PRT), a post-fermented tea, is prized for its complex flavor profile and health-promoting properties. While extended storage enhances its sensory attributes, the decade-scale metabolic dynamics underpinning flavor evolution remain unexplored. This study comprehensively characterized non-volatile metabolomic profiles and flavor changes in PRT across a 10-year storage period (2012-2023).
View Article and Find Full Text PDF