Carbamazepine at environmentally relevant concentrations caused DNA damage and apoptosis in the liver of Chinese rare minnows (Gobiocypris rarus) by the Ras/Raf/ERK/p53 signaling pathway.

Environ Pollut

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Scienc

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To assess genetoxicity and the underlying mechanisms of carbamazepine (CBZ) toxicity in fish, adult Chinese rare minnows (Gobiocypris rarus) were exposed to 1, 10, and 100 μg/L CBZ for 28 d. Comet assays indicated that hepatic DNA damage was significantly increased in groups of minnows exposed to CBZ at all concentrations in a dose-dependent manner compared to those of the control groups (p < 0.05). Liver levels of 8-hydroxydeoxyguanosine (8-OHdG) were significantly increased at 10 and 100 μg/L CBZ (p < 0.05). TUNEL assays indicated that the average apoptotic rates of the livers of female and male minnows were significantly increased following exposure to CBZ at all concentrations for 28 d (p < 0.05). Significant increases in caspase 3 and 9 activities after CBZ exposure at all concentrations and caspase 8 at 10 and 100 μg/L CBZ exposure reflected the presence of mitochondrial apoptosis (p < 0.05). The mRNA levels of gadd45a, mdm2, casp3 and casp9 in female and male minnows exposed to CBZ at all concentrations were significantly increased compared with those in the control groups (p < 0.05). Significant increases in the levels of p21 in female minnows exposed to 1 and 100 μg/L CBZ, p53 in female minnows at all CBZ treatments and bcl2 in male minnows exposed to 1 and 100 μg/L CBZ were observed, indicating p53 pathway activation. The inhibition of ras levels in females and males exposed to CBZ at all concentrations and increased levels of raf1 in males exposed to CBZ at all concentrations indicated Ras/Raf1/MAPK (ERK) activation. Therefore, the present study demonstrates that CBZ at environmentally relevant levels induces DNA damage and apoptosis in Chinese rare minnows by the Ras/Raf/ERK/p53 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.116245DOI Listing

Publication Analysis

Top Keywords

dna damage
8
chinese rare
8
rare minnows
8
minnows gobiocypris
8
gobiocypris rarus
8
carbamazepine environmentally
4
environmentally relevant
4
relevant concentrations
4
concentrations caused
4
caused dna
4

Similar Publications

The role of absent in melanoma 2 (AIM2) in cardiovascular diseases.

Inflamm Res

September 2025

Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.

Cardiovascular diseases (CVDs) are a group of conditions that significantly affect human health and are among the leading causes of death and disability worldwide. Clinical trials and basic research have demonstrated that inflammation plays a pivotal role in the development of CVDs. The inflammasome is a critical component of the innate immune system, involved in various inflammatory responses to pathogens and tissue damage.

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF

Cell senescence is a state of stable proliferation arrest characterized by morphological changes and high senescence-associated β-galactosidase (SA-β-gal) activity. Inducing senescence in cancer cells is beneficial for cancer therapy due to proliferation arrest, however, the mechanisms underlying this process remain insufficiently understood. Therefore, the present study investigated the mechanisms of radiation-induced cellular senescence in A549 human lung cancer cells, focusing on the DNA damage response and cell cycle regulation.

View Article and Find Full Text PDF

Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.

View Article and Find Full Text PDF

Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.

View Article and Find Full Text PDF