Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The viral protein ICP6, encoded by herpes simplex virus 1 (HSV-1), harbours a RIP-homotypic interaction motif (RHIM), that plays a role in viral inhibition of host cell death pathways. Other members of the Herpesviridae family also encode RHIM-containing proteins that interfere with host-cell death pathways, including the M45 protein from murine cytomegalovirus, and ORF20 protein from varicella zoster virus. We have used amyloid assembly assays, electron microscopy and single molecule fluorescence spectroscopy to show that the ICP6 RHIM is amyloidogenic and can interact with host RHIM-containing proteins to form heteromeric amyloid complexes, in a manner similar to that of M45 and ORF20 RHIMs. The core tetrad sequence of the ICP6 RHIM is important for both amyloid formation and interaction with host RHIM-containing proteins. Notably, we show that the amyloid forming capacity of the ICP6 RHIM is affected by the redox environment. We propose that the formation of an intramolecular disulfide bond within ICP6 triggers the formation of amyloid assemblies that are distinct from previously characterised viral amyloids M45 and ORF20. Formation of viral-host heteromeric amyloid assemblies may underlie a general mechanism of viral adaptation against host immune machineries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2020.106524DOI Listing

Publication Analysis

Top Keywords

amyloid assemblies
12
rhim-containing proteins
12
icp6 rhim
12
herpes simplex
8
simplex virus
8
death pathways
8
host rhim-containing
8
heteromeric amyloid
8
m45 orf20
8
amyloid
7

Similar Publications

Role of CPEBs in Learning and Memory.

J Neurochem

September 2025

Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.

Memory formation involves a complex interplay of molecular and cellular processes, including synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). These processes rely on activity-dependent gene expression and local protein synthesis at synapses. A central unresolved question in neuroscience is how memories can be stably maintained over time, despite the transient nature of the proteins involved in their initial encoding.

View Article and Find Full Text PDF

Beyond the Amyloid Core: Modulation of Aggregate Conformational Diversity by Mutations in the Noncore Regions.

J Am Chem Soc

September 2025

State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China.

Emerging evidence underscores the regulatory roles of nonamyloidogenic regions in controlling the aggregation dynamics and cytotoxicity of amyloidal proteins, but the mechanism remains unclear. Herein we investigated how flanking sequences modulate the conformational heterogeneity in the p53 238-262 amyloid segment using scanning tunneling microscopy (STM). By comparing the wild-type (wt) and three pathogenic mutations (R248W, R248Q, R249S) in the noncore regions, we reveal that flanking alterations remodel β-sheet aggregates and induce conformational plasticity in β-strand ensembles through the generation of novel conformational substates and selective elimination of existing conformational substates.

View Article and Find Full Text PDF

Hydrophilicity-Driven Modulation of Amyloid-β(1-40) Fibrillation by Engineered Nanomaterials.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.

Amyloid-β (Aβ) fibrillation is a spontaneous, thermodynamic process governed by nucleation and elongation. While many studies have explored the ability of engineered nanomaterials (ENMs) to modulate Aβ fibrillation, such as inhibitors, promoters, and dual-modulators, the key physicochemical property of ENMs that determines this behavior remains unclear. In this study, we developed a comprehensive library of ENMs with well-controlled physicochemical properties, including surface charges, morphologies, and hydrophilicity, to systematically investigate their effects on Aβ40 fibrillation.

View Article and Find Full Text PDF

Validation of helical symmetry parameters in the EMDB.

Acta Crystallogr D Struct Biol

October 2025

Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.

Helical symmetry is a structural feature of many biological assemblies, including cytoskeletons, viruses and pathological amyloid fibrils. The helical parameters twist and rise are unique metadata for helical structures. With the increasing number of helical structures being resolved through cryo-EM and deposited in the EMDB, there is a growing possibility of errors in the metadata associated with these entries.

View Article and Find Full Text PDF

The mechanisms driving amyloid assembly have long intrigued structural biologists, as they offer insights into systemic fibrotic changes and the dynamic behavior of transthyretin (TTR) aggregation, crucial for developing amyloid-targeted therapies. In TTR-associated amyloidosis, amyloid fibrils form via destabilization of the tetramer into dimers and monomers. While many TTR mutations have been studied, the atomistic impact of multiple mutations on amyloid transthyretin (ATTR) self-assembly remains underexplored.

View Article and Find Full Text PDF