98%
921
2 minutes
20
The present study explored the antidepressant potential of vorinostat (VOR) against chronic social defeat stress (CSDS) in mice. Since this model has the remarkable capacity to delineate the resilient and the defeated mice, we also looked for their molecular deviations. Defeated mice showed classical phenotypic alterations such as anhedonia, social avoidance, anxiety and despair. Whereas, resilient mice were immune to the development of those. Both defeated and resilient mice demonstrated marked CORT elevation in blood. Development of resilience vs. defeat to CSDS was found to be associated with the differential nuclear levels of GR, HDAC3 and HDAC6 in the hippocampus. Activation of a stress responsive adaptive mechanism involving these mediators at the nuclear level might be offering resilience while maladaptive mechanisms leading to defeat. Interestingly, an elevated hippocampal HDAC6 level in defeated mice was also observed, which was restored by VOR treatment. Further studies will be necessary to delineate the HDAC6 associated antidepressant mechanisms. As HDAC3 and HDAC6 are crucial mediators of GR signaling, further molecular studies may aid in understanding the basis of development of resilience to target MDD with new prospective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psyneuen.2020.105083 | DOI Listing |
Psychiatry Res
September 2025
Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, PR China. Electronic address:
Aims: Running exercise has demonstrated efficacy in the prevention and treatment of depression, yet the underlying mechanisms remain incompletely elucidated. Mitochondrial dysfunction and impaired mitophagy have been implicated in depression pathogenesis, while SIRT1 has been shown to play a critical role in both depression and mitochondrial regulation. Building on these established associations, this study aimed to investigate the antidepressant mechanisms of running exercise, with particular fucus on mitophagy regulated by SIRT1.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, The University of Osaka, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Stress-related disorders, such as depression and anxiety, have been one of the most important medical issues. Accumulating evidence suggests that the activation of the pituitary adenylate cyclase-activating polypeptide and its receptor PAC1 are involved in the stress axis and the development of stress-related disorders. We recently developed PA-915, a small-molecule, non-peptide, high-affinity PAC1 antagonist, and demonstrated that it significantly suppresses anxiety-like behavior in acute stress-induced mice.
View Article and Find Full Text PDFEnviron Res
August 2025
College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China. Electronic address:
Chronic psychosocial stress is a major risk factor for major depressive disorder (MDD). The impact of 17β-trenbolone (17-TB), an anabolic steroid and potential environmental endocrine disruptor, on stress responses and mood states in mammals is unclear. In this study, we explored how 17-TB interacts with chronic social defeat stress (CSDS) to drive neuroinflammatory cascades and behavioral abnormalities in mice.
View Article and Find Full Text PDFNat Commun
September 2025
National Institute of Mental Health, Bethesda, MD, USA.
Inflammation is increasingly recognized as a risk factor for psychiatric disorders. Animal models of stress and stress-related disorders are associated with blood neutrophilia. The mechanistic relevance of this to symptoms or behavior is unclear.
View Article and Find Full Text PDFBMC Neurosci
August 2025
School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
Background: Depression is a prevalent mental disorder, and prolonged exposure to social defeat is a major contributing factor in the onset of depression. Repeated social defeat stress (RSDS) is a commonly used animal model for depression, significantly impacting on the pathogenesis of depression-related to social disorders. The basolateral amygdala (BLA) and the ventral hippocampus (vHPC) are critical brain regions involved in RSDS-induced social behavioral disorders, but the specific neural oscillations occurring in these regions following social defeat remain unclear.
View Article and Find Full Text PDF