Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multiple sclerosis (MS) is a demyelinating disease caused by an auto-reactive immune system. Recent studies also demonstrated synapse dysfunctions in MS patients and MS mouse models. We previously observed decreased synaptic vesicle exocytosis in photoreceptor synapses in the EAE mouse model of MS at an early, preclinical stage. In the present study, we analyzed whether synaptic defects are associated with altered presynaptic Ca signaling. Using high-resolution immunolabeling, we found a reduced signal intensity of Cav-channels and RIM2 at active zones in early, preclinical EAE. In line with these morphological alterations, depolarization-evoked increases of presynaptic Ca were significantly smaller. In contrast, basal presynaptic Ca was elevated. We observed a decreased expression of Na/K-ATPase and plasma membrane Ca ATPase 2 (PMCA2), but not PMCA1, in photoreceptor terminals of EAE mice that could contribute to elevated basal Ca. Thus, complex Ca signaling alterations contribute to synaptic dysfunctions in photoreceptors in early EAE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711289PMC
http://dx.doi.org/10.1016/j.isci.2020.101830DOI Listing

Publication Analysis

Top Keywords

presynaptic signaling
8
eae mouse
8
mouse model
8
multiple sclerosis
8
observed decreased
8
early preclinical
8
eae
5
disturbed presynaptic
4
signaling photoreceptors
4
photoreceptors eae
4

Similar Publications

In Npc1 deficient mice, postnatal developmental alterations in cerebellar microglia and Purkinje cells (PCs) are followed by early-onset neurodegeneration. Even in the absence of PC loss, microglia in Npc1nmf164 mice display hallmark features of activation during early postnatal development, including increased proliferation, enhanced phagocytic activity, and morphological changes indicative of an activated state. In this study, we investigated whether mammalian target of rapamycin complex 1 (mTORC1) drives postnatal activation of cerebellar microglia in Npc1nmf164 mice.

View Article and Find Full Text PDF

A de novo mutation in the transcription factor Nucleus accumbens associated protein 1 (NACC1) gene (c.892C > T p.R298W) causes a rare, severe neurodevelopmental disorder which manifests postnatally.

View Article and Find Full Text PDF

DREADD (design receptors exclusively activated by designer drugs) is a widely used powerful tool designed to study specific cellular functions. However, off-target effects of chemogenetic activators, including clozapine N-oxide (CNO) and deschloroclozapine (DCZ), have been reported. In our study, we demonstrated the direct off-target effects of CNO and DCZ on basal Ca levels in the locus coeruleus nucleus in both neurons and astrocytes by combining viral microinjection, Ca imaging and electrophysiology.

View Article and Find Full Text PDF

The RNA-binding protein TRIM71 is essential for brain development, and recent genetic studies in humans have identified as a risk gene for congenital hydrocephal-us (CH). Here, we show that monoallelic missense mutations in are associated with hearing loss (HL) and inner ear aplasia in humans. Utilizing conditional knockout mice carrying a CH and HL-associated mutation, we demonstrate that loss of TRIM71 function during early otic development (embryonic day 9 to 10) causes severe HL.

View Article and Find Full Text PDF

Loss of synaptic Munc13-1 underlies neurotransmission abnormalities in spinal muscular atrophy.

Cell Mol Life Sci

August 2025

Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease characterized by degeneration of spinal motoneurons, leading to muscle atrophy and synaptic loss. SMN functions in mRNA splicing, transport, and local translation are crucial for maintaining synaptic integrity. Within the presynaptic membrane, the active zone orchestrates the docking and priming of synaptic vesicles.

View Article and Find Full Text PDF